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1.0 EXECUTIVE SUMMARY

This report presentsthe results of research and development efforts of the first six

months of Task 1, Phase 3 of a general project entitled "The Development of a Program

Analysis Environment for Ada." The scope of this task was defined early in Phase 1

(initiated June 1, 1988) to include the design and development of a prototype system for

testing Ado software modules at the unit level. The system was called Query Utility

Environment for Software Testing of Ada (QUEST/Ada). The report for Task 2 of this

project, entitled "Reverse Engineering Tools for Ada Software," is given in a separate

volume, since the documentation activities for Task 1 and Task 2 are being conducted

independently.

Phase I of this task completed the overall QUEST/Ada design, which was subdivided

into three major components, namely: (1) the parser/scanner, (2) the test data generator,

and (3) the test coverage analyzer. A formal grammar specification of Aria and a parser

generator were used to build an Ada source code instrumenter. Rule-based techniques

provided by the CLIPS expert system tool were used as a basis for the expert system. The

prototype developed performs test data generation on the instrumented Ada program using

a feedback loop between a test coverage analysis module and an expert system module. The

expert system module generates new test cases based on information provided by the

analysis module. Information on the design is given in the Phase 1 Report [Brown89], and

these details will not be repeated here.

The goals of Phase 2 were: (1) to continue to develop and improve the current user

interface to support continued research, (2) to develop and empirically evaluate a succession

of alternative rule bases for the test case generator such that the expert system achieves

coverage in a more efficient manner, and (3) to extend the concepts of the current test

environment to address the issues of Ada concurrency. In Phase 2 the entire system was

ported to the UNIX operating system operating on a sun SPARCstation network under

XWindows. This, along with the addition of a Librarian module within QUEST, greatly

improved its usability; however, additional work on the user interface was still required at

this point. The evolution of QUEST concentrated upon the Test Data Generator (TDG)

module, which is the expert system designed to select the test data that will be most likely

to drive a specific control path in the program. Four types of rules were used in the

development of the TDG: random, initial, parse-level, and symbolic evaluation. Finally, a

major literature review was conducted on the subject of testing Ada concurrency constructs,

and an approach was formulated for integrating this into QUEST. Details of activities

within Phase 2 are presented in the Phase 2 report [Brown90].

The goals of Phase 3 are: (1) to further refine the rule base and complete the

comparative rule base evaluation, (2) to implement and evaluate a concurrency testing

prototype, (3) to convert the complete (unit-level and concurrency) testing prototype to a

workstation environment, and (4) to provide a prototype development document to facilitate



the transfer of the researchtechnology to a working environment. Thesegoals have been
partially met in the first six monthsof Phase3 assummarized in the following paragraphs.

To a large extent developments within this period with regard to refining the
prototype have been driven by the exampleAda code moduleswhich were obtained from
NASA. Sincethe previousversion of the prototype had only consideredinteger types,fixed
and floating point types were added to the test data generation rules. This innovation is
described in Section 2.1. Also, provisions were made to handle multiple conditions and
global variables,which are described in Sections2.3 and 2.4.

Work in the innovation of the test casegenerator took the form of implementing the
design work that was done in Phase 2. A condition-oriented two-phased approach was
taken, which is condition-oriented in the sensethat only partially-covered conditions are
consideredfor further new casegeneration. During the first phaseof the process,a best test
caseis selectedasthe model for new cases.Two measurementswere designedto select the
best test case. One measurementis basedsolely on the target condition while the other
measurementis basedon the target condition plus the conditions that are on the path to the
target condition. During the secondphase,one of the three developedmethods is selected
to generatenew casesbasedon the given bestcase. The three methodsof modification are
random, fixed percentage, and symbolic evaluation. A detailed description of these
innovations are described in Section 2.2.

Actual executionof the updatedprototype enabled the comparison of the test case
generation rules with those previously applied, both for the example modules which were
previously used to test QUEST, and someof the NASA-supplied modules. The results of

these experiments, given in Section 3, were mixed. Some showed the newly implemented

approach to be quite good, while others showed them to be about the same as previous

methods. Since these were performed late in the reporting period, a detailed analysis of

these results has not been performed. These results will be invaluable in guiding the

remaining part of the project.

The porting of the prototype to a workstation environment (in particular, Sun

SPARCstation, UNIX, XWindows) has been completed, and a technology transfer document

has been drafted. Additional work needs to be done, however, in enabling the prototype

to take full advantage of this environment. In particular, the ability to execute the module

under test without leaving the QUEST environment is a feature which will be added along

with other improvements in the user interface during the remainder of Phase 3. Also, the

technology transfer document given in Section 3 should be regarded as a very preliminary

draft at this point.

The effort with regard to concurrency will be given additional emphasis in the

remainder of the project. At this point additional design effort has been directed at

evaluating the alternatives proposed at the end of Phase 2. It has been determined that the

lock-step/monitor approach has the greatest chance for success, and a discussion of this is



given in Section 4. Due to the emphasis upon the other prototype modifications, however,

no accommodations for this have yet been made in the prototype.



2.0 PROTOTYPE DEVELOPMENT

2.1 FIXED AND FLOATING POINT EXTENSIONS

The test data generation rules have been extended to handle fixed point and floating

point variable types. Information on all variables is passed from the code analyzer to the

test data generator through the file FACTOR.CLP. This file contains a "define facts"

statement for use by CLIPS. For example,

(deffacts

(names x y z)

(types int fixed float)

(deltas 0 0.01 O)

(low-bounds -5000 -50000 - 100000)

(high-bounds 5500 50000 100000))

indicates that in the module under test, there are three variables, x, y, and z, and their data

types, deltas, low bounds, and high bounds are as shown. The delta value for a fixed point

variable is the distance between possible values for that variable. Delta values for variables

that are not fixed point types have no meaning in this context.

CLIPS supports only one numeric type -- number. Consequently there are certain

operations that are not supported, e.g., integer division. CLIPS stores all numbers as single

precision floating point values, which may be a source of round off and overflow errors.

This limitation could be eliminated by rewriting and recompiling some of the CLIPS source

code, but it was decided that this would not be necessary for the prototype implementation.

Another difficulty encountered with CLIPS is its inability to read numbers which are

not in the following format: an optional sign (+ or -), digits (0-9), an optional decimal point

and digits, and an optional e for exponential notation with a corresponding (optional) sign

and digits for the exponent. For example 237, 15.09, + 12.9, 3e5, and -32.3e-7 are all valid

numbers. If the module under test contains constants using different notations (such as

floating point numbers containing X's), these must be modified to be compatible with

CLIPS. In order to compensate for this, the formats of the numbers output by the test data

generator are determined by the types of the corresponding variables, as determined from

the FACTOR.CLP file. Integer test data are output in integer format, fixed point data are

output in CLIPS' floating point format, and floating point data are output in floating point

format using power of ten notation.



2.2 INNOVATIONS IN TEST CASE GENERATION

The objective of typical test case generation is to generate test cases that provide

maximal software coverage. Coverage here is measured in terms of the completeness of

driving condition branches. In order to achieve this goal, a condition-oriented two-phase

approach was developed [Brown90]. It is condition-oriented in the sense that only partially-

covered conditions (called target conditions) are considered for further new case generation.

During the first phase of the process, a best test case is selected as the model for new cases.

Two measurements have been designed to select the best test case. One measurement is

solely based on the target condition. The other measurement is based not only on the target

condition but also on the conditions that are on the path to the target condition. During

the second phase, one of the three developed methods is selected to generate new cases

based on the given best case. The three methods are random modification, fixed percentage

modification, and symbolic evaluation based modification.

Although the design of the test case generation approach was reported in an earlier

report [Brown90], two parts of the design were not fully implemented. One of these was

the best test case measurement considering conditions on the path, while the second was the

fixed percentage modification. In the earlier prototype, the amount of modification was

based on the value of a variable. The updated version of the prototype uses the declared

range of a variable as the basis. A complete and updated design is presented here to

provide a self-explanatory document.

2.2.1 TEST CASE GENERATION STRATEGY

The objective of this framework is to achieve maximal branch coverage. In order to

ensure fruitful test case generation, a branch coverage analysis is needed. The coverage

analysis follows the Path Prefix Strategy of Prather and Myers [PRA87]. In this strategy, the

target source code is represented as a simplified flow chart. The branch coverage status of

the code is recorded in a coverage table. When a branch is driven (or covered) by any test

case, the corresponding entry in the table is marked with an "X". The goal of the test case

generation is to mark all entries in the table.

Consider Figures 2.2.1a and 2.2.1b. Currently, conditions 1 and 2 are fully covered;

conditions 3, 4, and 5 are partially covered; and condition 6 is not covered. Since conditions

1 and 2 are fully covered, there is no need to generate more cases for them. Condition 3,

on the other hand, is partially covered. More cases should be generated to drive its false

branch, i.e., 3F, which is not yet covered. The Path Prefix Strategy states that new cases can

be generated by modifying a test case, say case-3T, that drives branch 3T. Consider the fact

that case-3T starts at the entry point and reaches condition 3. Although it drives 3T, it is

"close" to driving 3F. Slight modification of case-3T may devise some new cases that will
drive 3F.
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Figure 2.2.1a A sample flow chart

Condition

1

2

3

4

5

6

Branch

T F

X X

X X

X

X

X

Figure 2.2.1b Coverage table of Figure 2.2.1a



With this strategy in mind, the test case generator should target partially covered
conditions. Earlier test cases can be used as models for new cases. Conditions that have

not been reached yet, e.g., condition 6 in Figure 2.2.1b, will not be targeted for new case

generation. This is because no test case model yet exists that can be used for modification.

A test case model will eventually surface later in the process, and in this example, after

condition 3, 4 and 5 are fully covered, a model for condition 6 will appear.

2.2.1.1 BEST TEST CASE

Problems arise when there is more than one test case driving the same path. For

example, if cases 1, 2, ..., n all drive branch 3T of Figure 2.2.1b, then the selection of a

model case for branch 3F becomes problematic. It is necessary to quantify the "goodness"
of each case and use the "best" case as the model for modification.

Consider the typical format of an IF-THEN statement: IF exp THEN do-1 ELSE

do-2. The evaluated Boolean value of exp determines the branching. Exp can be expressed

in the form of: LHS <op> RHS. The goodness of a test case, tl, relative to a given
condition can be defined as

I LHS (tl) - RHS (tl) I / ( 2 * MAX ( ] LHS (tl) [, I RHS (tl) I )) (1)

LHS(tl) and RHS (tl) represent the evaluated value of LHS and RHS, respectively,

when tl is used as the input data. This measure tells the closeness between LHS and RHS

IDEA91]. When this measure is small, it is generally true that a slight modification of tl

may change the truth value of exp, thus covering the other branch. The importance of slight
modification to a model test case is based on the fact that the model case starts from the

entry point and reaches the condition under consideration. Between the entry point and the

condition, the modified cases must pass through exactly the same branching conditions and

yield the same results. For this reason, the smaller the modification is, the better the chance

will be for a modified case to stay on the same path. The measurement of (1) provides this

"goodness" of a test case which ranges from 0 to 1. A test case that yields the smallest
measurement is considered to be the best test case of the condition under consideration.

The closeness measurement has a serious risk. Recall that a set of new test cases is

generated based on the best test case of a partially covered condition (called target

condition), and the intent of the new test cases is to cover the uncovered branch of the

target condition. This closeness is computed based on the target condition only. A slight

modification to the target condition may not have the same meaning to those conditions on

the path. This may result in what we will call unanticipated branchings along the path i.e.,

a flow of control that may no longer drive the target condition. In order to reduce the

likelihood of unanticipated branching, a test case's goodness measure should also consider

those conditions that are on the path leading to the target condition. This idea can be

expressed in the following example.
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In Figure 2.2.1c, two test cases, t a and tb, pass through the false branches of conditions 1, 2,
and 3, of Figure 2.2.1a. Assume the goal is to generate more cases to cover the truth

branch of condition 3. Either ta or tb should be used as the model for the new cases. If the

whole input space is represented as R, it can be divided into several subspaces (see Figure

2.2.1c). First, R is divided into 1T and 1F, which represent the portions of input space that
drive the truth and false branches of condition 1, respectively. Similarly, 1F can be divided

into 2T and 2F, and 2F can be divided into 3T and 3F.

1T R

ta 2T

o

t b

3F

Figure 2.2.1c Inpurt space of the program in figure 2.2.1a

In this example, both t, and tb fall within the subspace of 3F. A best test case must

be selected between t, and tb for new case generation. According to the earlier definition,

the goodness is related to the distance that each test case is from the boundary of 3T and
3F. Based on this definition, t, is closer to the boundary so it should be chosen as the best

test case. From the viewpoint of condition 3, this is correct. A relatively small modification

to to may lead to 3T. However, ta is also close to the boundaries of conditions 1 and 2.

There is a good chance that a slight modification to t, may lead to undesired branching at
conditions 1 and 2.

8



We will call the modification magnitude that is required to drive a different branch

at a condition the freedom space of a test case. In this example, t a has a small freedom

space at condition 3 which is desirable. But its freedom spaces at conditions 1 and 2 are

also small, which may cause unanticipated branchings. On the other hand, although t_ is not

as close to condition 3's boundary as t a is, it is not close to any other boundaries either. A

larger modification may be required for t o to lead to 3T. Since t b is far away from any other

boundaries, a larger modification may not cause any unanticipated branches. For this

reason, the goodness of a test case concerning a target condition should be determined by

the freedom space at the target condition as well as the freedom spaces of all conditions

that are on the path to the target condition. For the former element, the smaller the better;

for the latter element, the larger the better. The goodness can now be redefined as:

G(t,D) = w * L(t,D) + (l-w) * P(t,D) (2)

where:

G0,D) : Goodness of test case t at condition D.

L(t,D) : Freedom space of t at D.

P(t,D) : Sum of freedom space reciprocals of t along the path toward D.

w : Weighting factor between L(t,D) and P(t,D), 0 < w < 1.

L(t,D) is defined as in formula (1), and P(t,D) is defined as:

P(t,D) = E 1 / (n*L(t,Di)) (3)

all D i

Here, D i is a condition that is on the path toward D, and n is the total number of these

conditions. Although this definition does not represent the actual distance of test case t to

a boundary, it is a reasonable approximation. With this definition, the smallest value

indicates the best test case. Although formula (2) seems more appropriate than formula (1),

it is difficult to prove this theoretically since both methods are heuristic. Both definitions

are derived heuristically.

2.2.1.2 TEST CASE GENERATION PROCEDURE

The basic idea of new case generation is to modify the best test case of a target

condition slightly with the intent to drive the uncovered branch of the condition. In Figure

2.2.1.2, input to the procedure contains three parameters x, y, and z. Assume condition D's

truth branch is covered, and its best test case is (xl, Yl, zl). More cases must be generated

to cover D's false branch. Condition D can be expressed as LHS(x, y, z, vl, v2, ...) <op>

RHS(x, y, z, Vl, v 2.... ). Here, vl,v2,.., are internal variables of the procedure. Input

parameters x, y, and z may or may not be modified between the entry point and condition



(x,y,z)

Figure 2.2.1.2 A test case (x,y,z) drives condition D

2.2.1.2.1 INCREMENT AND DECREMENT MODIFICATION

This method increments and decrements each parameter of the best test case with a

fixed percentage of each parameter's ranges. The percentage can be any one of or any

combination of 1%, 10%, 20%, 40%, etc. For example, if the best test case is (xt, Yl, 7-I) and

the ranges for input variables x, y, and z are [0 10], [-100 0], and [-50 50] respectively, a 1%

increment and decrement would generate new cases like (x_ + 0.1, Yl + 1, z_ + 1) and (xl-0.1,

yl-1, zl-1).

2.2.1.2.2 BOUNDARY COMPUTATION

This approach finds the boundary that separates the truth and the false values of a

condition, say D. It then tries to modify the best case to cover both sides of the boundary.

Since the branching of D can only be externally controlled by input parameters, the

condition boundary should be defined for x, y, and z. For example,

xt, = fl (y, z, vl, V2, ...)

Yb = t2 (x, z, v_, v2, -..)
zb = IB (x, y, vl, v2, ...)

These boundary equations can be derived from D using symbolic manipulation. For

example, given a condition

x+ 3*y =< 4-6*z+v

10



x+ 3*y =< 4-6*z+v

the condition boundary will be

xb = 4-6"z + v-3*y
Yb= (4-6"z + v-x)/3
Zb=(4-X-3*y+v)/6

Remember that the new casegeneration shouldbe basedon the bestcase,(x1,Yl,zl),
and the modification shouldbe assmall aspossible. A simple strategy would be to modify

only one variable at a time. For example, we can modify x and keep y and z unchanged.

In order to compute the boundary value of x at D, the actual values of y, z, Vl, v 2, ... just

before D should be used in the computation. The computation provides the desired

boundary value of x at condition D, say x b. Three new cases can be generated to cover both

truth and false branches: (x b, Yl, zl), (xb+e, Yl, Zl), and (Xb-e, Yl, Zl)" Here, e is a small

positive number, e.g., e = (range of x) / 100.

Up to this point, it is assumed that x (or y or z) would not be modified between the

entry point and condition D. This may not be valid at all. If an input parameter is modified

by the program before reaching the target condition, the precise computation of the

boundary may lose its purpose. The question becomes: what can be done if an input

parameter has been modified? If the desired boundary value of x at condition D is xu, this

value must be inverted back through the path that leads to condition D. Through this

inversion, the value of x at the entry point can be found. However, this is a complex path

predicate problem which does not have a general solution [PRA87].

Consider the following situation. The input value of x is x_, the actual value of x just

before condition D is x c. Assume x has been modified before reaching D and the boundary

value of x at D is xb. We might surmise that input x should be changed from x, to an

unknown value x u such that, just before reaching D, x will be changed from x c to x u. Since

we do not know how x is modified along the path, precise modification to x at the entry

point cannot be computed. However, an approximation can be derived. At condition D,

the desired value of x is x b and the provided value is xc. We may consider x i is off the

target, i.e., the condition boundary at D, by the following percentage:

Ixb-xcl / (2*MAX(Ixbl, Ixcl)) * 100 % (4)

Following this measurement, we can modify input x based on this percentage.

2.3 MULTIPLE CONDITIONS

11



A branching decision may contain boolean expressionsof two or more conditions.
In Ada, the binary boolean operators are AND, AND THEN, OR, and OR ELSE. The
AND THEN and OR ELSE operators cause"short circuit" evaluations in that they do not
necessarilyevaluateall terms of the expressionif a subsetof them can determine the truth
value of the expression. Currently the expert systemcomponentof the prototype test data
generator handles only relational expressionsas conditions (i.e. arithmetic expressions
involving relational operations). In order to handle boolean operatorswithin the prototype
system, instrumentation transforms boolean operators into nested if statements. It is
recognizedthat there are semanticdifferencesbetweennested branching statementswhen
the boolean operatorshaveside effects. However, for simplification of the prototype system
these issues are ignored. A condition number and decision number are passed as
parametersto the instrumentedprocedure that replacesa decisionto differentiate between
the AND, AND THEN and OR, OR ELSE. For example, if the A and B are expressions
involving a single relational operator, and the Aria code is:

IF A AND B THEN .... END IF;

the instrumented code will appear as:

condition number := 1;
IF decision( decision_number,condition_number, relop(...A...) ) THEN ...

condition number :; condition number + 1;
IF decision(decision_number,condition_number, relop(...B...) ) THEN ...

However, the Aria statement

IF A AND THEN B THEN .... END IF;

will be treated by the expert systemastwo decisionsin order to seek coverage,asfollows:

condition number := 1;
IF decision(decision_number,condition_number, relop(...A...) ) THEN ...

decision number := decision number + 1;
IF decis[-on(decision_number,condition_number,relop(...B...) ) THEN

In order to more appropriately handle the semanticsof the AND and OR operators,
and to introduce rules into the rule basethat have knowledgeof theseoperators and which
take advantage of this information, a special function called "boolop" will be developed
which is analogousto the "relop" function employed for relative operators. Continuing to
use the AND and AND THEN as examples, the instrumentation for the AND THEN
operator is as previously described, that is, it is treated as two separate decisions. An if
statementcontaining the AND of two relational expressionsA and B will be instrumented
with procedure call to a procedure to handle this operator, as shownbelow:.

12



IF boolop( "AND",decision(..), decision(...) ) THEN ...

In attempting to achieve coveragefor this condition, the expert systemrule set can take
advantage of information about the sets of variables that occur in the expressionA, the
expressionB, and thosevariables that occur in both expressionsA and B. This information
can be used in determining which variables should be altered in attempting to alter the
boolean value of the condition of the if statement. For example,in attempting to drive the
condition TRUE when the decision A is FALSE and B is TRUE, the next test case can

avoid altering the values of input variables that have appeared in B. Or, if both A and B

have a FALSE value, the TCG can seek to alter input variables appearing in both A and

B in order to achieve the change in boolean value.

2.4 GLOBAL VARIABLES AND MODULE DEFINITIONS

Under the QUEST system design which evolved out of Phase 2 of this project,

modules were generally considered to be independent with communication performed

through the Ada parameter passing mechanism. Global variables were originally ignored

in order to bring the prototype into operation as quickly as possible. In the process of

attempting to test NASA-supplied code it was found that global variables were quite

widespread. This section discusses modifications in the prototype which were required to

accommodate global variables and the revised concept of a "module definition" which this
necessitated.

2.4.1 GLOBAL VARIABLES

Variables that are global in scope must be treated as parameters to the test module.

They can affect the functions of a module in the same way a formal parameter can, and

similarly, they can be affected by the module. Several different methods for handling global

variables were considered. The simplest approach is to treat all of the system's global

variables as potential parameters to the system. This requires minimal design and

implementation time, but the resulting test execution module would have to search through

many more combinations of inputs than is necessary. If there were more than a few global

variables in the system, this increases the test time more than is acceptable.

The ideal approach is to identify just those global variables that are referenced by

the test module and by all of the procedures and functions that the test module calls. This

particular subset of global variables would then be treated as parameters to the module.

However, this method was determined to be infeasible because it would require too much

time to design and implement.

The method chosen to update the prototype is a balance between the two approaches

discussed above. The parser/scanner searches through the test module for all occurrences

13



of variables, and eachglobal variable that appearswithin the module itself will be treated

as a parameter. This will serve for the current prototype in that it is estimated to apply to

approximately 75% of the modules to be tested. However, in any final implementation of

QUEST, the implementors should consider the ideal case. This extension of the prototype

will more accurately inform the Test Data Generator of the test module's inputs, which will

result in a shorter testing time.

In order to implement this approach, the parser/scanner uses the DIANA package

to find the global variables and their type definitions. DIANA is an intermediate

representation for Ada programs and an interface to the Ada library. It retrieves

compilation units from the Ada library and stores them as a net. Many of the activities

described below are facilitated through DIANA.

The parser/scanner (P/S) retrieves the compilation unit for the requested test

module as well as all of the compilation units which the test module depends upon. Then

it searches through the module for each occurrence of any variable. If a variable does not

appear in the module's local symbol table, it is assumed to be a global variable. Every

compilation unit is then searched for the type of the global variable. The type information

is then used to create the P/S facts which are sent to the Test Data Generator (TDG).

2.4.2 PACKAGES

The previous version of the prototype assumed that the module under test was not

inside of a package. The improved prototype includes the ability to test modules inside of

a package. This required the following two modifications:

1) The user/user interface was changed to specify the package name as well as the

procedure or function name.

2) The parser/scanner was modified to recreate and compile the entire package when

instrumenting.

2.4.3 DEFINITIONS OF SYSTEM, MODULE, AND TEST

QUEST must have access to all of the compilation units which make up each

software system under test. QUEST will represent each system with a single directory which

contains an Ada library. This library and it's associated Ada path will give access to all of

the compilation units of the system.

The Module Under Test (MUT) must be instrumented, recompiled, and linked with

a main procedure. The main procedure is a harness which reads test data and sets the data
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up as parameters. The combined MUT and the harnessmake up the Test Execution
Module. This module is placed in anAda library in a sub-directoryof it's systemdirectory.

When the Test Execution Module hasbeen tested, the output of the test is given a
name and cataloged. This enablesanygiven test to be recalled from the catalog by name.

In summary,a "system"isdefined to bea singledirectory. Separatemoduleswill have
separate sub-directoriesunder the system,and each test of any module will have it's own
name in the test catalog. The following representsthe directory structure:

SystemDirectory
Module Directory 1
Module Directory 2
Module Directory n

--> test catalogentry 1
--> test catalog entry 2
--> test catalog entry n

15



3.0 EXPERIMENTAL EVALUATION

3.1 AU-DEVELOPED TEST MODULES

Prototype system testing has been performed using both Ada programs designed at

Auburn University (AU) and those supplied to Auburn University by NASA. Those

developed at Auburn were specifically designed to exercise the types of constructs which the

TCG was dealing with at the time. On the other hand, the NASA-supplied modules

provided a real-world test of the prototype capabilities. The AU-developed modules will
be discussed in this section, while the NASA module tests will be described in Section 3.2.

(Note: figures and tables in this section are placed at the end of the section to improve

readability.)

Three test programs have been designed at Auburn in order to trace the

performance of the expert system under the various rule sets. Rule Sets were grouped into

categories consisting of the following:

. Rules that produce new test cases by making random changes to the values of the

input variables. These rules produce random values within the range of the type of

the input variables. These values are independent of any previous test cases.

o Rules that take the best test cases for conditions and generate new test cases by

incrementing and decrementing the input variables by a percentage of their value or

by a percentage of their range.

. Rules that symbolically evaluate values of input variables at conditions, finding

solutions that will alter the branching, and generating new values for input variables

that are clustered around these solutions. These rules implement ideas discussed in

Section 2.2 above.

The rules used in these tests do not take into account conditions in the execution paths

leading to the condition under test and the associated best test cases. These rules are

presently under investigation. Rather they utilize only information about the boundary value

of the condition for which an alternative path is being forced. Results of these traces have

allowed analysis of failures, and the prototype system has been altered in order to improve

performance. Figures 3.1a-c shows the flow graphs for each of the three test programs.

Improvement in performance has been achieved for some of the rule sets and some

of the programs. For example, using Test 2 and the rule set that alters input variables by

40% of their value, changes to the prototype achieved complete coverage much more

quickly than previous versions of the TCG. Figure 3.1d illustrates this difference with a

graph of the number of decisions covered by test case number for the alternative rule sets.
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Although the changesin the TCG did not alwaysimprove performance on the three
testprograms,it is the casethat the changesnever decreasedperformanceon anyof the test
programs used. The data for each of the test programs and the rule sets usedin the tests
are given in Tables 3.1a-c. Within each casegiven in these tables, the first column is the
number of test casesrequired to obtain the coverage,and the secondcolumn is the number
of paths covered.
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Figure 3.1a Flow Graph for Test 1
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Figure 3.1b Flow Graph for Test 2
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Figure 3.1c Flow Graph for Test 3
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Table 3.1a Outcomesfor Test 1

Random
1
2
7
20

5
8
9
10

Old SE Rule

0

1

7

27

52

56

76

135

232

0

5

8

11

12

13

15

17

19

New SE Rule

0 0

1 5

3 8

8 11

14 12

15 13

20 15

49 17

85 19

103 20

232 20

Old 40% Value

1

15

870

1105

5

8

11

13

New 40%Value

1 5

15 8

870 11

1105 13

Old 10% Range
1

7

8

5

8

10

New 10% Range
1 5

7 8

8 10

Old 1% Range
1

7

8

5

8

9

New 1% Range
1 5

7 8

8 9
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Table 3.1b Outcomesfor Test 2

Random
1
3
4

6
7
8

Old SE Rule
0
1
3
9
21

0
9
11
13
14

New SE Rule
0 0
1 9
2 11
4 13
8 14
21 14

Old 40% Value
1
9
12
87

9
12
13
14

New 40% Value
1 9
2 11
4 13
8 14

Old 10% Range
1
2
3
6
9

9
10
12
13
14

New 10% Range
1 9
2 10
3 12
6 13
9 14

Old 1% Range
1

3

6

9

9

12

13

14

New 1% Range
1 9

3 12

6 13

9 14
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Table 3.1c Outcomesfor Test 3

Random
1
2
3
6

Old SE Rule
0
1
6
9
35
85
108
244

0
3
5
10
12
13
14
14

New SE Rule
0 0
1 3
4 5
5 10
18 12
39 13
45 14
128 15
244 15

Old 40% Value
1
11
12
14
116
240
244

3
6
11
14
15
16
17

New 40%Value
1 3
11 6
12 11
14 14
116 15
240 16
244 17

Old 10% Range
1
3
4
6
8
14
108
109

3
6
11
13
14
16
17
18

New 10%Range
1 3

3 6

4 11

6 13

8 14

14 16

108 17

109 18
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Table 3.1c Outcomesfor Test 3 (continued)

Old 1% Range New 1% Range
1 3 1
3 6 3
4 11 4
6 13 6
8 14 8
14 16 14
108 17 108

3
6
11
13
14
16
17
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3.2 NASA MODULES

The prototype system was applied to a package containing mathematical routines

which was part of code supplied to Auburn University by NASA. Four functions from this

package were selected for testing:

function ATAN(X:REAL) return REAL;

function SIN(X:REAL) return REAL;

function ASIN(X:REAL) return REAL;

function SQRT(X:REAL) return REAL;

Figure 3.2a is a listing of the code for the package body of MATH_LIB, while Figure 3.2b

provides a listing of the instrumented code for each of the above functions. This code has

been graphically pretty-printed with a Control Structure Diagram (Cross, J.H., Morrison,

K.I., May, C. H. and Waddel, K.C., "A Graphically Oriented Specification Language for

Automatic Code Generation," Phase 1 Final Report, NASA-NCCS-13, Sub 88-224,

September 1989).

The results of the tests for each of the four rule sets are given in Table 3.2. These

results are also shown graphically in Figures 3.2c-f. The table values are to be interpreted

as follows: the first column represents the test case number at which a change in coverage

occurred. The second column represents the cumulative number of branches covered (each

decision represents two branches).

26



body MATH_LIB is

PI 2 : constant REAL := 1.5707963267949;

-- The following routines are coded directly from the algorithms and

-- coeficients given in "Software Manual for the Elementry Functions"

-- by William J. Cody, Jr. and William waite, Prentice Hall, 1980

-- The coeficients are appropriate for 25 to 32 bits floating significance

-- Trig functions implemented in software are not as efficient as can

-- be achieved by using the mathematical functions provided by the

-- 68881 coprocessor. This package body should be replaced by

-- a package body which uses MACHINE CODE and hooks into these

-- 68881 operations.

PI : constant REAL := 2.0 * PI_2;

function TRUNCATE (X : REAL) return REAL is

begin

i-_if X > 0.0 then

return REAL(INTEGER(X - 0.5)) ;

u] else

• _ return REAL(INTEGER(X + 0.5)) ;

end if;

_nd TRUNCATE;

function SIN ( X : REAL) return REAL is

-- Copyright Westinghouse 1985

C1 : constant REAL := 1.57079631847;

C3 : constant REAL :_ -0.64596371106;

C5 : constant REAL := 0.07968967928;

C7 : constant REAL := -0.00467376557;

C9 : constant REAL := 0.00015148419;

X NORM : REAL;

X INT : REAL;

X--2 : REAL;

Y--: REAL;

begin

X NORM := X / PI 2;

"_if abs (X__NOP_) > 4.0 then

REDUCE TO -2 PI .. 2 PI

X INT := REAL(INTEGER(X NORM / 4.0));

X--NORM := X NORM * 4.0 ; X INT;

end if ;

if X NORM > 2.0 then

-- REDUCE TO -PI .. PI

x NORM := 2.0 - X_NORM;

elsif X NORM < -2.0 then

X NO_ := -2.0 - X NORM;

end if ;

if X NORM > 1.0 then

-- R_DUCE TO -PI/2 .. el/2
X NORM := 2.0 - X NORM;

elsif X NORM <

x NO_ "=
-i.0 then

-2.0 - X NORM;

end if ;

X 2 := x NORM * X NORM;

Y--:= (CT * (C3 *--(C5 * (C7 * C9 * X_2) * X_2) * X_2) * x_2) * X_NORM;

Figure 3.2a Un/nstrumented NASA Code
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"4 return Y;

[end SIN ;

fUnction COS ( X : REAL)

gin

return SIN(X + PI 2) ;

COS ;

function TAN (X : REAL) return REAL

return REAL is

is

SGN, Y : REAL;

N : Integer;

XN : REAL;

F, G, XI, X2 : REAL;

RESULT : REAL;

EPSILON : REAL := 0.0002441;

C1 : constant REAL := 8#1.444#;

C2 : constant REAL := 4.8382_67948_97E-4;

function R (G : REAL) return REAL is

PO :

P1 :

P2 :

QO :
Q1 :
Q2 :

constant REAL := 1.0;

constant REAL := -0.11136 14403 566;

constant REAL := 0.10751_54738_488E-2;

constant REAL := 1.0;

constant REAL :-- -0.44469 47720 281;

constant REAL :- 0.15973_39213_3OOE-I;

4-
0.5);

end R;

begin

-- Y := abs (X);

--N :- INTEGER(X / (2.0 / PI));

-- XN := REAL(N);

-- X1 := TRUNCATE(X) ;

--X2 :- X - Xl;

-- F :- ((X1 * XN * C1) + X2) * XN * C2;

abs (F} < EPSILON then
RESULT :- F;

G :_ F * F;

RESULT := R(G) ;

end if;

if N mod 2 = 0 then

i[_ return -1.0 / RESULT;

end if;
[end TAN;

begin

-- return ((P2 * G + PI) * G * F + F) + (((Q2 * G + QI) * G + 0.5) +

function ASIN (X : REAL) return REAL is

G, Y : REAL;

RESULT: REAL;

EPSILON: REAL := 0.0002441;

I function R (G : REAL) return REAL is

I Pl : constant := _0o27516 55529 0596EI_REAL

Figure 3.2a Uninstrumented NASA Code (Continued)
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P2 :

P3 :

Q0 :

Q1 :

Q2 :

Q3 :

begin

constant REAL := 0.29058 76237 4859E_;

constant REAL := -0.59450 14479 3246;
constant REAL := -0.16509 93320 2424E2;

constant REAL := 0.24864 75896 9164E2;

constant REAL := -0.10333 86707 2113E2;

constant REAL := 1.0;

W---- return (((P3 * G + P2) * G + PI) * G) + (((G + Q2) * G + QI) * G +

Q0);

9nd R;

begin

Y := abs (X);
if Y > 0.5 then

i-_if Y > 1.0 then

i_' Y := 1.0;

I -- ERROR: ASIN called for X>I; X truncated to 1.0 then
i -- continue

end if;

--G := ((0.5 - Y) + 0.5) / 2.0;

-- Y := -2.0 * SQRT(G) ;

-- RESULT := Y * Y * R(G);
-- RESULT := (Pi / 4.0 + Result) / Pi / 4.0;

else

if Y < EPSILON then

-- RESULT :-- Y;

else

--G := Y * Y;

-- RESULT := Y * Y * R(G);

end if;

end if;
if X < 0.0 then

RESULT := -RESULT;

end if;

return RESULT;

ASIN;

function ACOS(X : REAL) return REAL is

G, Y : REAL;

RESULT : REAL;

EPSILON : REAL :- 0.0002441;

function R (G : REAL) return REAL is

P1 :

P2 :

P3 :

Q0 :

Q1 :

Q2 :

Q3 :

begin

constant REAL := -0.27516 55529 0596EI;

constant REAL := 0.29058 76237 4859EI;

constant REAL := -0.59450 14419 3246;

constant REAL := -0.16509 93320 2424E2;

constant REAL := 0.24864 72896 9164E2;

constant REAL := -0.10333 86707 2113E2;

constant REAL := 1.0;

4---- return (((P3 * G + P2) * G + P1) * G) + (((G + Q2) * G + QI) * G +

Q0) ;

end R;

began
Y := abs (X) ;

Y > 0.5 thenif Y > 1.0 then

Figure 3.2a Uninstrumented NASA Code (Continued)
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t-

I
• I

Y := 1.0;

--ERROR: ACOS called for X>l. Y is truncated to 1.0

-- and then continue

end if;

--G := ((0.5 - Y) + 0.5) / 2.0;

-- Y := -2.0 * SQRT(G) ;

-- RESULT := Y * Y * R(G);

X < 0.0 then
RESULT := (Pi / 2.0 + RESULT) / Pi / 2.0;

._se

RESULT := -RESULT;

end if;

else

-_if Y < EPSILON then

i_ RESULT := Y;

_[else

• _--- G := Y * Y;

_ RESULT := Y * Y * R(G);

end if;

• "--_if X < 0.0 then

[_--RESULT :- (Pi / 4.0 + RESULT)

else

• _--RESULT := (Pi / 4.0 - RESULT)

end if;

/ Pi / 4.0;

/ Pi / 4.0;

end if;

-- return RESULT;

._nd ACOS;

function ATAN ( X : REAL) return REAL is

-- Copyright Westinghouse 1985

Cl : constant REAL :- 0.9999993329;

C3 : constant REAL := -0.3332985605;

C5 : constant REAL := 0.1994653599;

C7 : constant REAL := -0.1390853351;

C9 : constant REAL := 0.0964200441;

Cll : constant REAL := -0.0559098861;

C13 : constant REAL := 0.0218612288;

C15 : constant REAL := -0.0040540580;

A 2 : REAL;

Y--: REAL;

A : REAL;

begin

--A := X;

abs (A) > 1.0 then

i_ A := I-0 / A;

end if ;

--A 2 := A * A;

--Y--:= (CI * (C3 * (C5 * (C7 * (C9 * (CII * (C13 * C15 * A_2) * A_2) *

A 2) * A 2) * A 2) * A_2) * A_2) * A;

--abs (X) >= i_0 then

if X < 0.0 then

!I _-- Y := -(PI_2 • Y);
else

Figure 3.2a Uninstrumented NASA Code (Continued)

3O



Y := PI 2 - Y;

i l end if ;

end if ;

return Y;

ATAN ;

function ATAN2 (X, Y : REAL) return REAL is

Z, Result : REAL;

began

Y = 0.0 then

if X = 0.0 then

Result := 0.0;

-- in ATAN2 is called with 0.0/0.0, a result of 0.0 is given as

-- a result; should an exception be raised here instead?

elsif X > 0.0 then

Result := Pi_2;

else

Result := -Pi 2;

end if;

else

m_

z :- abs (X / X);
If underflow or overflow is detected, go to the exception

Result := Atan(Z) ;

if Y < 0.0 then

Result :- Pi - Result;

end if;

if X < 0.0 then

Result := -Result;

end if;

end if;

return Result;

exception

when Numeric Error =>

--_if abs _X_ > abs (Y) then
_-7 Result : Pi 2;

_if X < 0.0 then

I I_ Result := -Result;

end if;

se

Result := 0.0;

if Y < 0.0 then

J !_ Result := Pi - Result;

end if;

end if;

-- return Result;

end ATAN2;

Figure 3.2a Uninstrumented NASA Code (Continued)
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function SQRT ( X : REAL) return REAL is

-- Copyright Westinghouse 1985

Y , ROOT PWR , X NORM : REAL;

A : constant REAL := 2.1902;

B : constant REAL -= -3.0339;

C : constant REAL := 1.5451;

begin

-- X NORM := X;

ROOT PWR := 1.0;

X <= 0.0 then
return 0.0;

end if ;

if X > 1.0 then

-- REDUCE TO 0.25 .. 1.0

while X NORM > 1.0 loop

ROOT--PWR := ROOT PWR * 2.0;

X NORM := X NORM--* 0.25;

end loop ;

e

ile X NORM < 0.25 loop

ROOT--PWR := ROOT PWR * 0.5;

X_NORM := X_NORM--* 4.0;

loop ;

end if ;

Y :- A + B + (C + X NORM);

Y := 0.5 / (Y / x NO--RM / Y):

Y := 0.5 / (Y / X NORM / Y);

Y :_ Y * ROOT_PWR;

return Y;

SQRT ;

function EXP ( X : REAL) return REAL is

-- Copyright Westinghouse 1985

C1 : constant REAL :- 9.99999900943303E-01;

C2 : constant REAL := 5.00006347344554E-01;

C3 : constant REAL := 1.66667985598315E-01;

C4 : constant REAL := 4.16350120350139E-02;

C5 : constant REAL := 8.32859610677671E-03;

C6 : constant REAL := 1.43927433449119E-03;

C7 : constant REAL := 2.04699933614437E-04;

X1 : REAL;

-- 4.01169746699903E-07 = MAX ERROR APPROXIMATION-FUNCTION

Y : REAL;

E PWR : REAL := 1.0;

E : REAL := 2.71828182845905;

begin

-_if X > 88.0 then

_ i _ raise NUMERIC-ERROR; i

[ end if ;

_Xl := abs (X);

_if Xl > 88.0 then

___u i _ return 0.0;
iC

end if ;

ile Xl >= 1.0 loop

E := E PWR * E * E;- ---2.0;

U end loop

-- Y := 1.0 * (Cl * (C2 * (C3 * (C4 * (C5 " (C6 * C7 * Xl) * Xl) * Xl) *

Figure 3.2a Uninstrumented NASA Code (Continued)
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XI) * Xl) * XI) * Xl;

-- Y := Y * E PWR;

X < 0.0 then
Y := 1.0 / Y;

end if ;

-- return Y;

end EXP ;

function LOG10 ( X : REAL) return REAL

I__ Copyright Westinghouse 1985

C1 : constant REAL := 0.868591718;

C3 : constant REAL := 0.289335524;

C5 : constant REAL := 0.177522071;

C7 : constant REAL := 0.094376476;

C9 : constant REAL := 0.191337714;

C RI0 : constant REAL := 3.1622777;

Y : REAL;

X NORM : REAL;

X--LOG : REAL;

FRAC : REAL;

FRAC 2 : REAL;

begin

X LOG := 0.5;

X NORM := X;

._ X <= 0.0 then
return 0.0;

end if ;

if X >= 10.0 then

while X NORM >= 10.0 loop

REDUC--E TO 1.0 .. I0.0

X LOG := X LOG + 1.0;

X NORM := X NORM * 0.I;

end loop ;

is

e

while X_NORM < 1.0 loop

REDUCE TO 1.0 .. I0.0

X LOG := X LOG - 1.0;

X--NORM := X NORM * I0.0;

Yoop ;

end if ;

FRAC := (X NORM - C RI0) + (X_NORM + C_RI0);

FRAC 2 := FKAC * FRAC;

Y :=-- (CI * (C3 * (C5 * (C7 * C9 * FRAC_2) * FRAC_2) * FRAC_2) * FKAC_2

) * FKAC;

return Y + X LOG;

end LOG10 ;

end of copyrighted section

I I function LOG ( X :

I
REAL)

I

Ibegin

,--_-- return 2.302585093 *

Lend LOG ;

end MATH_LIB;

return REAL is

LOGI0 (X) ;

Figure 3.2a Uninstrumented NASA Code (Continued)
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with text io, instrumentation;

use text To;

-- Harness the puppy

procedure exim is

TestNum: integer;

indata, outdata: file type;

type Test_Num Type is digits 6;

i, j,k: Test_Num_Type;

I procedure print_parms(intermediate: in file_type);

lpackage inst is new instrumentation(print_parms);

use inst;

-- package instl is new inst.float_inst( Test_Num_Type);

-- use instl;

IIPackage is new text_io.integer_io(integer);int_io

use int io;

llpackage test_float_io

use test float io;

procedure print__parms(intermediate: in file_type) is

begin

_ put(intermediate, i);

_end print_parms;

generic

type REAL is digits <>;

Ipackage MATH__LIB is

-- Sine, cosine, tangent of an angle given in radians

function SIN (X: REAL) return REAL ;

function COS (X : REAL) return REAL ;

I function TAN (X : REAL) return REAL ;

-- Arc sine, arc cosine, and arc tangent - return an angle

-- expressed in radians

function ASIN (X : REAL) return REAL ;

is new text io.float_io( Test_Num_Type);

function ACOS (X : REAL) return REAL ;

function ATAN (X: REAL) return REAL ;

-- Arc tangent with two parameters - Arc Tan (X/Y)

-- returns an angle expressed in radians

I function ATAN2 (X, Y : REAL) return REAL

Figure 3.2b Instrumented NASA Code
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Square root

I function SQRT (X: REAL) return REAL

-- Exponential

I function EXP (X: REAL) return REAL

-- Common logarithm - log base 10

I function LOG10 (X: REAL) return REAL

-- Natural logarithm - log base e

I function LOG (X: REAL) return REAL

end MATH_LIB;

_ body NATH_LIB is

Ilpackage inst_REAL is new inst.float inst( REAL);

use inst REAL;

PI 2 : _onstant REAL := 1.5707963267949;

-- The following routines are coded directly from the algorithms and co

i--eficients given in "Software Manual for the Elementry Functions" by Wi

--lliam J. Cody, Jr. and William Waite, Prentice Hall, 1980 The coeficie

--nts are appropriate for 25 to 32 bits floating--significance Trig funct

--ions implemented in software are not as efficient as can be achieved b

--y using the mathematical functions provided by the 68881 coprocessor.

-- This package body should be replaced by a package body which uses MAC

--HINE_CODE and hooks into these 68881 operations.

PI : constant REAL := 2.0 * PI__2;

I function TRUNCATE (X return REAL isREAL)

II:_gin

if decision (TestNum, i, relop (TestNum, i, i, X, GT, 0.01 ) then

I[-'-- return REAL(INTEGER(X - 0.5));

1 5else

l,--J[ i _ return REAL (INTEGER (X + 0.5));

[ end if;
tend TRUNCATE;

function SIN ( X : REAL) return REAL is

-- Copyright Westinghouse 1985

C1 : constant REAL := 1.57079631847;

C3 : constant REAL := -0.64596371106;

C5 : constant REAL := 0.07968967928;

C7 : constant REAL := -0.00467376557;

C9 : constant REAL := 0.00015148419;

X NORM : REAL;

X INT : REAL;

X 2 : REAL;

Y--: REAL;

begin

-- X NORM := X / PI 2;

_ decision(TestNum, I, relop(TestNum, I, i, abs (X_NORM),GT,4.0)) then
REDUCE TO -2 PI .. 2 PI

! X_INT := REAL ( INTEGER (X NORM / 4.0));

Figure 3.2b Instrumented NASA Code (Continued)

35



X NORM := X NORM * 4.0 * X INT;

end if ;

if decision(TestNum, 2,relop(TestNum, 2, I,X_NORM, GT,2.0) ) then
-- REDUCE TO -PI .. PI

X NORM := 2.0 - X NORM;

_elsif decision(TestNum, 3, 3, -2.07 ) th¢__relop (TestNum_ 1, >.'_NOR/% LT,

_ X_NORM := -2.0 - X_NORM;

end if ;

if decision(TestNum, 4, relop(TestNum, 4, l,X NORM, GT, I.0)) then
-- REDUCE TO -PI/2 .. PI/2

X_NORM := 2.0 - X_NORM;

_elsif decision(TestNum, 5, relop(TestNum, 5, l,X NORM, LT, -1.0)) then

_ X_NORM := -2.0 - X NORM;

end if ;

X 2 := X NORM * X NORM;

Y--:= (CY * (C3 *--(C5 * (C7 * C9 * X_2) * X_2) * X_2) * X_2) *

X NORM;

return Y;

SIN ;

function COS ( X : REAL) return REAL is

return SIN(X + PI_2);
COS ;

function TAN (X : REAL) return REAL is

SGN, Y : REAL;

N : Integer;
XN : REAL;

F, G, Xl, X2 : REAL;
RESULT : REAL;

EPSILON : REAL :- 0.0002441;

Cl : constant REAL :-- 8#1.444#;

C2 : constant REAL :-- 4.8382 67948 97E-4;

function R (G : REAL) return REAL is

P0 :
P1 :

P2 :

Q0 :
QI :
Q2 :

begin

constant REAL := 1.0;

constant REAL := -0.11136 14403 566;

constant REAL := 0.i0751 54738_488E-2;
constant REAL := 1.0;

constant REAL := -0.44469 47720 281;

constant REAL := 0.15973 37213 3OOE-I;

-- return ((P2 * G + PI) * G * F + F) + (((Q2 * G + QI) * G + 0.5) +
0.5);

end R;

began
Y := abs (X) ;

N := INTEGER(X / (2.0 / Pl));

XN := REAL(N) ;

Xl := TRUNCATE (X) ;
X2 := X - XI;

F :-- ((Xl * XN * CI) + X2) * XN * C2;

if decision(TestNum, l, relop(TestNum, l,l, abs (F),LT,EPSILON)) then
RESULT := F;

else

Figure 3.2b Instrumented NASA Code (Continued)
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_G :=F* F;
RESULT := R(G) ;

end if;

decision(TestNum, 2,relop(TestNum, 2, I,REAL(N mod 2) ,EQ, 0.0) ) then
return RESULT;

.._se

return -1.0 / RESULT;

end if;

-_nd TAN;

function ASIN (X : REAL) return REAL is

G, Y : REAL;

RESULT: REAL;

EPSILON: REAL := 0.0002441;

function R (G : REAL) return REAL is

P1 :

P2 :

P3 :

Q0 :

Q1 :

Q2 :

Q3 :

begin

constant REAL := -0.27516 55529 0596EI;

constant REAL := 0.29058 76237 4859EI;

constant REAL := -0.594_0 144_9 3246;

constant REAL := -0.16509--93320--2424E2;

constant REAL := 0.24864 75896 9_64E2;

constant REAL :- -0.I0333__86707_2113E2;

constant REAL :- 1.0;

4- -- return (((P3 * G + P2) * G + PI) * G) + (((G + Q2) * G + QI) * G

+ Q0);
_end R;

begin

Y :- abs (X) ;

- if decision(TestNum, l, relop(TestNum, l,l,Y, GT, 0.5)} then

i-_if decision (TestNum, 2, relop (TestNum, 2, i, Y, GT, 1.0 ) ) then

Y := 1.0;

ERROR: ASIN called for X>I; X truncated to 1.0 then

continue

end if;

G := ((0.5 - Y) + 0.5) / 2.0;

-- Y := -2.0 * SQRT(G) ;

--RESULT := Y * Y * R(G);

-- RESULT := (Pi / 4.0 + Result) / Pi / 4.0;

else

if decision(TestNum, 3, relop(TestNum, 3, I,Y, LT, EPSILON)) then

-- RESULT := Y;

else

-- G := Y * Y;

-- RESULT := Y * Y * R(G);

i . end if;
end if;

_if decision(TestNum, 4,relop(TestNum, 4,1,X, LT, 0.0)) then

I i _ RESULT := -RESULT;

I end if;
return RESULT;

ASIN;

I function ACOS(X : REAL) return REAL is

Figure 3.2b Instrumented NASA Code (Continued)
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G, Y : REAL;
RESULT : REAL;

EPSILON : REAL := 0.0002441;

function R (G : REAL) return REAL is

P1 :

P2 :

P3 :

Q0 :
Q1 :

Q2 :

Q3 :

begin

constant REAL := -0.27516 55529 0596EI;

constant REAL := 0.29058 76237 4859EI;

constant REAL := -0.59450 144_9 3246;
constant REAL := -0.16509--93320--2424E2;

constant REAL := 0.24864 72896 9T64E2;
constant REAL := -0.i0333 86707 2113E2;

constant REAL := 1.0;

return (((P3 * G + P2) * G + PI) * G) + (((G + Q2) * G + QI) * G

+ Q0);
end R;

begln
Y "= abs (X) ;

if declsion(TestNum, l,relop(TestNum, l,l,Y, GT, 0.5)) then

if decision(TestNum, 2, relop(TestNum, 2, l,Y, GT, l.0)) then

Y := 1.0;

--ERROR: ACOS called for X>I. Y is truncated to 1.0

-- and then continue
end if;

G :- ((0.5 - Y) + 0.5) / 2.0;
Y :-- -2.0 * SQRT(G};
RESULT := Y * Y * R(G);

if decision(TestNum, 3,relop(TestNum, 3,1, X, LT, O.O) ) then
RESULT := (Pi / 2.0 + RESULT) / Pi / 2.0;

else

RESULT := -RESULT;

end if;

else

if decision(TestNum, 4,relop(TestNum, 4, l,Y, LT,EPSILON)) then

RESULT := Y;

else

G := Y* Y;

RESULT := Y * Y * R(G);

end if;

if decision(TestNum, 5, relop(TestNum, 5,1,X, LT, 0.0)) then

RESULT := (Pi / 4.0 + RESULT) / Pi / 4.0;

else

RESULT := (Pi / 4.0 - RESULT) / Pi / 4.0;

end if;

end if;

return RESULT;

ACOS;

function ATAN ( X : REAL) return REAL is

-- Copyright Westinghouse 1985
Cl : constant REAL := 0.9999993329;

C3 : constant REAL := -0.3332985605;

C5 : constant REAL := 0.1994653599;

Figure 3.2b Instrumented NASA Code (Continued)
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C7 : constant REAL -= -0.1390853351;

C9 : constant REAL := 0.0964200441;

CII - constant REAL -= -0.0559098861;

C13 : constant REAL -= 0.0218612288;

C15 : constant REAL -= -0.0040540580;

A 2 : REAL;

Y - REAL;

A - REAL;

begin

--A :=X;

decision(TestNum, l, relop(TestNum, l,l, abs (A),GT, I.0)) then
A :=1.0 /A;

end if ;

--A 2 :=A* A;

--Y := (CI * (C3 * (C5 * (C7 * (C9 * (ell * (C13 * C15 * A_2) * A_2)

• A 2) * A 2) * A 2) * A 2) * A 2) * A;

-- if dec_sion(TestNum,2, relop_TestNum, 2,1, abs (X),GE, I.0)) then

if decision(TestNum, 3,relop(TestNum, 3,1,X, LT,0.0)) then

,_---- Y := -(PI 2 + Y);

"" L

end if ;

end if ;

-- return Y;

-_nd ATAN ;

function ATAN2 (X, Y : REAL) return REAL is

Z, Result : REAL;

begin

- if decision (TestNum, I, relop (TestNum, I, I, Y, EQ, 0.0) ) then

if-_ decision (TestNum, 2, relop (TestNum, 2, I, X, EQ, 0.0) ) then

_s

Result := 0.0;

in ATAN2 is called with 0.0/0.0, a result of 0.0 is given as

a result; should an exception be raised here instead?

if decision (TestNum, 3, relop (TestNum, 3, 1, X, EQ, 0.0) ) then

Result := Pi_2;

Result := -Pi 2;

end if;

else

Z := abs (X / Y);

-- If underflow or overflow is detected, go to the exception

-- Result := Atan(Z);

i--_if decision(TestNum, 4,relop(TestNum, 4,1, Y, LT, 0.0)) then

jt Result := Pi - Result;

end if;

_ ecision(TestNum, 5, relop(TestNum, 5,1,X, LT, 0.0)) then
Result := -Result;

end if;

end if;

-- return Result;

-- Quest/Ada / ejr:
--No instrumentation

No raise in the code, so this part is dead.

Figure 3.2b Instrumented NASA Code (Continued)
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exception

when Numeric Error =>

--_if abs (X) > abs (Y) then

iI_ Result := Pi 2;
i _if X < 0.0 then

i i _--Result :=-Result;

iLil"
_else

• I-- Result := 0.0;

-_if Y < 0.0 then

i end if ;
f

L

end if;

-- return Result;

._nd ATAN2;

function SQRT ( X : REAL) return REAL is

-- Copyright Westinghouse 1985

Y , ROOT PWR , X NORM : REAL;
A : constant REAL :- 2.1902;

B : constant REAL := -3.0339;

C : constant REAL := 1.5451;

begin
-- X NORM := X;

-- ROOT PWR := 1.0;

_ ecision (TestNum, I, relop (TestNum, 1, I, X, LE, 0.0) ) then
return 0.0;

end if ;

lif decision (TestNum, 2, relop (TestNum, 2, i, X, GT, 1.0) ) then
REDUCE TO 0.25 .. 1.0

while decision (TestNum, 3, relop (TestNum, 3, 1, X_NORM, GT, 1.0) ) loop
ROOT PWR := ROOT PWR * 2.0;

X NORM := X NORM--* 0.25;

end _oop ;

5 else

- _-_while decision(TestNum, 4, relop(TestNum, 4,1, X_NORM, LT, 0.25)) loop

l ll-- ROOT_eWR := ROOT_PWa * 0.5;
[ IY--- X_NORM := X NORM * 4.0;
l U end loop ;
L

end if ;

Y := A + B + {C + X NORM);

Y := 0.5 / (Y / X NORM / Y);

Y := 0.5 / (Y I X NORM / Y);

Y := Y * ROOT PWR;

return Y;

SQRT ;

function EXP ( X : REAL) return REAL is

-- Copyright Westinghouse 1985
C1 : constant REAL := 9.99999900943303E-01;

C2 : constant REAL := 5.00006347344554E-01;

C3 : constant REAL := 1.66667985598315E-01;

Figure 3.2b Instrumented NASA Code (Continued)

4O



C4 : constant REAL := 4.16350120350139E-02;

C5 : constant REAL -= 8.32859610677671E-03;

C6 : constant REAL := 1.43927433449119E-03;

C7 : constant REAL := 2.04699933614437E-04;

X1 : REAL;

-- 4.01169746699903E-07 = MAX ERROR APPROXIMATION-FUNCTION

Y : REAL;

E PWR : REAL := 1.0;

E--: REAL := 2.71828182845905;

begin

if decision(TestNum, l, relop(TestNum, i, I,X, GT,88.0) ) then"- i raise NUMERIC_ERROR;

end if ;

-- X1 := abs (X) ;

_ ecision(TestNum, 2,relop(TestNum, 2,1,Xl,GT,88.0)) then
_- return 0.0;

end if ;

While decision(TestNum, 3,relop(TestNum, 3,1,Xl,GE, l.O) ) loop

E_PWR := E_PWR * E * E;

Xl := Xl - 2.0;

loop ;

--Y := 1.0 * (Cl * (C2 * (C3 * (C4 * (C5 * (C6 * C7 * Xl) * Xl) * Xl)

• Xl) * Xl) * Xl) * Xl;

-- Y := Y * E PWR;

_ ecision(TestNum, 4,relop(TestNum, 4,l,X, LT,0.0)) then
Y :-i.0 /Y;

end if ;

,-- return Y;

end EXP ;

function LOG10 ( X : REAL) return REAL is

-- Copyright Westinghouse 1985

C1 : constant REAL := 0.868591718;

C3 : constant REAL := 0.289335524;

C5 : constant REAL :- 0.177522071;

C7 : constant REAL :- 0.094376476;

C9 : constant REAL := 0.191337714;

C R10 : constant REAL := 3.1622777;

Y : REAL;

X NORM : REAL;

X LOG : REAL;

FRAC : REAL;

FRAC 2 : REAL;

begin

-- X LOG := 0.5;

-- X--NORM := X;

@if decision(TestNum, l, relop(TestNum, l, I,X, LE,0.0)) then

return 0.0;

end if ;

decision(TestNum, 2,relop(TestNum, 2,1,X, GE, 10.0}) then

while decision(TestNum, 3, relop(TestNum, 3, l,X_NORM, GE, 10.0)) loop

REDUCE TO 1.0 .. i0.0
!l J_--X__G := X_LOG + 1.0;
il IF--X_NORM := X_NORM * O.1;
!I Ue_d loop ;
i L

Llelse .

lle decision(TestNum, 4,relop(TestNum, 4,1,X_NORN, LT,1.0) ) loop
REDUCE TO 1.0 . . i0.0

X_LOG := X_LOG - 1.0;

Figure 3.2b Instrumented NASA Code (Continued)
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•| I_- x NORM :: X_NORM * i0.0;

[ U end Yoop ;

end if ;

-- FKAC := (X NORM - C RI0) + (X_NORM + C_RI0);

-- FRAC 2 := FRAC * FRAC;

-- Y := (CI * (C3 * (C5 * (C7 * C9 * FRAC_2) * FRAC_2) * FRAC 2)

FRAC 2) * FRAC;

4--- return Y + X__LOG;

end LOG10 ;

-- end of copyrighted section

I function LOG ( X : REAL) return REAL is

I

bnedgin

return 2.302585093 * LOG10(X) ;
LOG ;

end MATH LIB;

Ipackage Math_Test is new MATH_LIB( Test_Num Type);

use Math Test;

9egin

_ open (indata, in_file, "test .data") ;

_ create (intermediate, out_file, "intermediate. results") ;

_ create (outdata, out_file, "output .data") ;

-- while not End OF file(indata) loop

-_ get (indata, TestNum) ;

--TestNum, patrol, parm2, . . .

!

get (indata, i) ;

-- i := TAN(i);

--_ put (outdata, TestNum) ;

--TestNum, modifiablel, modifiable2, . . .

-_ put (outdata, i) ;

_ new_line(outdata) ;

end loop;
close (indata) ;

_ close(intermediate) ;

e_ndClOSe (outdata) ;

exim;

Figure 3.2b Instrumented NASA Code (Continued)
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Table 3.2 NASA Module Testing Results

Arc Tangent function:

Random
0 0
1 2
2 3
22 3

SE
0
1
2
22

0
1
2
2

40% Value
0 0
1 1
2 2
4 4
5 5
22 6

10% Range 1%Range
0 0 0 0
1 1 1
2 2 2
4 4 4
5 5 22 6
22 6

Arc Sine function:

Random
0 0
1 2
2 3
17 3

SE
0
1
2
17

0
2
3
3

40% Value 10% Range
0 0 0
1 2 1
2 3 2
4 5 3
5 6 4
17 7 5

17

1% Range
0 0 0
2 1. 2
4 2 4
5 3 5
7 4 7
8 5 8
8 17 8

Sine function:

Random
0 0
1 4
2 5
4 8
6 9
9 10

SquareRoot function:

Random
0 0
1 1
2 2
5 3
57 4

SE
0
1
9

0

4

4

40% Value 10% Range
0 0 0

1 4 1

2 5 2

4 7 3

5 8 4

9 8 6

8

SE 40% Value 10% Range

0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 6 5 6 3

12 8 7 7 57

57 8 57 7

1% Range
0 0 0

4 1 4

5 2 5

6 4 7

7 5 8

8 9 8

9

1% Range
0 0 0

1 1 1

2 2 2

6 3 6

6 57 6
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4.0 CONCURRENCY TESTING FOR ADA PROGRAMS

One of the main goals of concurrent program testing, debugging and analysis is to

detect tasking errors -- mainly, deadlocks, communication errors, and concurrent access of

shared variables.

There are two fundamental approaches to Ada concurrency testing: static analysis

and task monitoring. In the static analysis, all possible task states of a program are explored

and checked for tasking deadlocks [STRgl, TAY83, DIL90]. A common problem of this

analysis is the unmanageable number of states. In this type of analysis, a program is not

actually run; it is simply analyzed syntactically. Because a syntactically possible state may

not be semantically possible, a large portion of the analysis effort may be wasted. Another

static analysis approach is to verify each task individually in local proofs and then check for

task interference in a separate cooperation proof, all through symbolic execution [DILg0].

The local proofs determine the partial correctness of each task and identify communication
interactions between tasks, while the cooperation proof verify mutual exclusion and the

absence of deadlock.

In the task monitoring approach, a program is actually run [CHE87, GER84, HEL85].

A separate run-time monitor records the task states and interactions. Similar to the conven-

tional software testing, "instrumentation code" must be inserted in the source program for

the tasking information collection purpose. Unfortunately, the extra codes may result in an

incorrect representation of the original tasking states and errors not detected [TAY88].

4.1 CONCURRENCY TESTING MEASUREMENT

One important aspect of software testing is the thoroughness of testing. However,

because of the dynamic feature of a concurrent program the program testing coverage is

difficult to measure. In particular, the task state space can be so large that it is impossible

to compute its size. The literature review and research to this point has led to the following

potential measurements for "concurrency" coverage:

. Task entry coverage: Each syntactically identifiable task is recognized as a task unit.

If a task contains other tasks, they are recognized as separate task units. This

concept is analogous to statement coverage in conventional testing. The difference
is that task units are identified instead of program statements. Most tasks must be

called before they are activated. For this reason, task entry coverage measures the

completeness of tasks being called. It is important to note that a task unit may be

called by different program units. Therefore, complete task coverage does not

guarantee complete statement coverage. This measure can also be viewed as

rendezvous coverage.
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Task calling statement coverage: A task calling statement requests service from a

task unit. This measurement gives the coverage completeness of all possible
communication links between tasks.

Task state space: If the size of possible (or feasible) state space can be computed,

the coverage of state space may give a good measurement of the testing complete-

ness.

4.2 DATA STRUCTURES FOR CONCURRENCY TESTING

Three kinds of information are needed for the proposed concurrency testing: program

structure, active-task dependencies, and task coverage. The program structure presents the

syntactical relationships among task units of the program under testing. The DIANA

(Descriptive Intermediate Attributed Notation for Ada) package is used to provide this data

structure in the proposed implementation. The active-task dependencies data structure

records the dynamic behaviors of all active tasks. This information is used to analyze

possible faulty behaviors, such as deadlocks and concurrent access of resources. A graph

representation will be used for this purpose. The task coverage information indicates the

completeness of testing. Task coverage is based on the testing goals. As described earlier,

this may include the task entry, task calling statement, task space, or any combinations of

these. Coverage tables will be used for this purpose.

There are two types of coverage tables in addition to the structure described above.

The first type is the summary table which lists all task units. In this table, each task unit is

marked either as covered or not covered, indicating the task entry coverage. The second

type of table is for each individual task unit. It contains two columns. One column

indicates the task units that the titled task may call, while the other column indicates the

task units that may call the titled task. Illustrations for these tables are given in the QUEST

Phase 2 report [Brown90].

4.3 TOOL REQUIREMENTS

In order to achieve and measure the task entry coverage and the task calling

statement coverage, task dependency information of the tested program must be provided

to the system. This information tells how a task can be activated. When a task is selected

as a candidate for testing coverage, this task and its parent task must become active first.

Although most tasks become active through task declaration, some run-time dependent tasks

must be activated through program execution. This tasking dependency information also

indicates the tasks that are called by each individual task. This is needed for the task calling

statement coverage.
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The DIANA package that is currently being used will provide all the needed
information. One of the major purposes of DIANA is to provide an intermediate
representation of an Ada program. A side benefit of using the DIANA package is that it
may make automatic instrumentation possiblewithin the QUEST project. This is because
DIANA provides pointers from the structure nets to the source code. With the pointers,
appropriate instrumentation statementscanbe inserted.

4.4 APPROACHES

The following tasks must be accomplished to achieve concurrency testing: (1)

designing a coverage metric for the program under test, (2) developing a procedure for

determining the next coverage candidates, and (3) performing tasking control and/or

generating test data to drive the desired coverage.

The coverage measurement may use any of the criteria mentioned above. When the

intermediate program representation is derived (e.g., by DIANA), a table-like coverage

metric can also be built. This metric will be similar to the branch coverage table of the

current QUEST/Aria.

The second task is to determine the next coverage candidates. A coverage candidate

can be a single task unit or a particular sequence of task units. If the invoking sequence of

task units is not specified, the sequence must be defined before the tasking behavior control

or the test data can be determined. This task may be divided into two parts, coverage

candidate identification and sequence (or path) identification.

The last phase is to perform the tasking behavior monitoring and control or to

generate test data that will drive the desired coverage. These approaches will be described

in the following subsections.

4.4.1 TEST DATA GENERATION APPROACH

Static analysis and task monitoring represent two extremes in Ada program testing

or debugging. The static analysis approach attempts to explore and analyze all possible

tasking states. On the other hand, task monitoring records and analyzes only one run of the

program execution at a time. From another perspective, the static analysis approach

analyzes the whole input space and the task monitoring approach analyzes only one point

in the input space. Here, the input space represents any input parameters over which a user

of the program has control. The search space for the static analysis is too large for

reasonable effort, and the space for the task monitoring is only a point. A rational

compromise is to settle somewhere between these two extremes.
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Sinceeach task monitoring cycleneedsinput data (or a test case)to drive it, a more
thorough testing can be achieved by providing test data for more task monitoring cycles.
If the test data is well designed,representativetask statescan be monitored and analyzed.
While many task monitoring and deadlock analysisapproacheshave been reported, our
researchwill emphasizetest data generation for task monitoring since this showsthe most
promise for successconsistentlywith the current QUEST/Ada approach.

The QUEST/Ada test data generator is designed for program unit testing. A
program unit can be a task, subroutine, or program body. A set of test data is generated
for a program unit to ensurebranch coverage. During the execution of an Ada program,
several tasks may be active at the same time, and these tasks may belong to different
program units. For an active task that requires input data, it will be appropriate to use the
test data generated for the involved program units. Since each program unit hasa large
number of test cases,combinations of these test data from various program units will
provide a wide variety of "concurrency"coverage. The following section will demonstrate
the methods to be applied to producing the required coverage.

4.4.2 IRON FISTED TESTING APPROACH

The fundamental philosophy of the proposed "iron fisted testing" is to drive Ada

program execution in a way that the desired "concurrency" coverage can be achieved. When

a task event happens, a specially designed scheduler will determine the sequence of tasks

to follow. Possible actions include continuing the current task, blocking the current task,

activating a blocked task, and forcing the execution to follow a particular direction. The

decision is based on the current tasking state, the current coverage status, the program

structure, the task priorities, and the desired goals. These criteria will be encoded in

production rules as is currently done for test case generation. The preconditions of a rule

define its applicability, and the consequences specify the actions to be taken when the rule

fires. The following subsections explain the potential actions of the scheduler.

When multiple tasks are available for execution, task priorities will be used to

determine which tasks should be executed. For this reason, priorities will dictate how the

iron fisted testing proceeds under these circumstances. The ultimate purpose of these

priorities is to achieve the desired goals efficiently. Sample priority assignment principles

follow (in descending order):

1. A task which leads to the unblocking of other tasks,

2. A task which leads to a desired coverage,

3. A task which has not been executed before,

4. A task which may be called by other tasks, and the lowest priority,
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5. A task which does not interact with other tasks.

From these principles it can be seen that various information are needed to
determine a priority assignment. These include coverage tables, task states, and the
program structure.

A task may be blocked naturally, due to the built-in Ada scheduler, or it may be
blocked artificially by the iron listed scheduler. A naturally blocked task must be unblocked
by the built-in scheduler. An artificially blocked task must be reactivatedby the iron listed
scheduler.

Before the iron fisted schedulerperforms the tasking control, an initial executionof
the program is required to provide data upon which the scheduler can function. This can
be achievedby letting the program run freely for a limited time, e.g., 1minute. During this
time, the coverageinformation is recorded. After the time limit, the schedulerwill perform
the tasking control basedon the achievedcoverageto that point. Details of the designof
potential schedulingpolicies are given in the Phase2 report [Brown90].
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5.0 TECHNOLOGY TRANSFER DOCUMENT

The purpose of the QUEST technology transfer document is to provide the software

tools industry with the information needed to implement a production-quality QUEST

system. Generally, this will require recording or otherwise adapting the prototype so that

it can handle the full range of Ada constructs. While this is a very large task, it is not

technologically difficult given the model which the current QUEST prototype provides.

This section is organized in order to facilitate a rapid understanding of QUEST by

someone who has little experience with such tools. The first section presents the user

interface such that immediate access to the system can be attained in order to enable the

remaining parts of the document to be better understood. The second major subdivision

presents a general description of the methodology employed by QUEST, i.e., a high-level

view of the theory upon which QUEST is based. For more lower-level details, the reader

is frequently referenced to the appropriate sections of other QUEST reports.

In the third major section of this document the QUEST system structure is presented.

Input/Output Requirements Language [TBE84]

is used to define the system components and subcomponents. The interfaces (i.e., messages

sent between component objects) are also described. This provides an indexed reference

to the next section which describes the directories and the files which make up the QUEST

system.

5.1 USER INTERFACE

The QUEST User Interface has been implemented in XWindows on networked Sun

Workstations. XWindows allows the user to interact with the user interface through the use

of a mouse and pulldown menus.

The initial QUEST window provides the user with a number of options. As shown

in Figure 5.1, the main user interface contains options for four pulldown menus: Project,

Testing, Reports, and Help. The three bars on this window indicate the progress of the

testing (once testing is selected). Although the bars are given initial values at the start of

the application, they may be changed by selecting an option from the Testing pulldown
menu.
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5.1.1 PROJECT SUBMENU

The Project Menu allows the "project" to be selected. A project is a grouping of one

source module along with all of the supporting files needed for testing Ada. It must be

created or selected in order to begin using the interface. Selecting a project will provide the

user with a list of the Ada files in that project's directory. Once the user selects the file, it

will be compiled and prepared for execution. The Project Menu also allows the user to

create a new project. Other selections include closing projects, deleting projects, and exiting
the user interface.

When the "Project" option is selected form the User Interface Screen the pull-down

menu of Figure 5.1.1a will appear. These suboptions have the following functions:

New - creates an entirely new project.

Open - allows an existing project to be opened. This will produce the window shown

in Figure 5.1.1b, which gives the user the ability to select the Ada module to

be tested. Entries in reverse field are subdirectories. Their selection will lead

to another similar window shown in Figure 5.1.1c.

Close - closes an open project.

Delete - deletes an entire project (not enabled).

Quit - restores control to the User Interface Screen.

PROJECT

New

Open
Close

Delete

Quit

Figure 5.1.1a Project Submenu
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Figure 5.1.1b
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Figure 5.1.ic Subdirectory option Window
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5.1.2 TESTING SUBMENU

The Testing Section is the heart of the user interface. It allows the user to start

testing, stop testing, and change the test metrics. When the "Testing" option is selected from

the User Interface Screen, the testing submenu given in Figure 5.1.2a will appear.

To begin testing, select the "Start Testing" option given in the submenu. At this

point, the instrumented code will be executed and the resulting data will be cataloged.

After each iteration of compiling data, the bars on the User Interface Screen will be

updated to reflect the progress of the test. Testing may be stopped anytime by selecting the

Halt Testing option.

The two options on the Testing Submenu "Enter Test Case" and "Select Test Set" are

not yet operational. The former option is the logical point at which the user can be

prompted for the variable values of a user-defined test case. Similarly, the "Select Test Set"

option would query the user for a file containing a number of test cases. The implementa-

tion of these options is essential to the finally functioning test system in that the user should

have the flexibility to override the test case generator, especially for initial test case

specification. However, while the implementation of these is quite labor intensive, it would

contribute little of theoretical interest, and therefore it has not been included in the current

prototype.

If the values for time, iterations, or coverage given on the User Interface Screen are

not desired, they may be changed through the "Set Test Metrics" option. Once selected, the

window will appear which is given in Figure 5.1.2b. Any of these three values can be altered

directly on the screen.

TESTING

Start Testing

Halt Testing
Enter Test Case

Select Test Set

Set Test Metrics

Figure 5.1.2a Testing Submenu
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5.1.3 REPORTS SUBMENU

The Reports Option is used to generate reports concerning testing which has already

been done. When selected, the Reports Submenu given in Figure 5.1.3 will appear. Two

types of report generators are available: Coverage Reports and Best Test Case Reports.

Currently, these report generators are written for the VAX VMS file management system.

Conversion to the workstation environment is expected in Phase 3.

REPORT

Coverage Report

BTC Report

Figure 5.1.3 Reports Submenu

5.1.4 HELP SUBMENU

The Help Option is designed to provide information about the user interface. The

user can select a general help or choose a keyword on which to find help. Since the help

is a scrollable window, searches may be easily conducted for the information required.

5.2 METHODOLOGY OF THE QUEST/ADA PROTOTYPE

The QUEST/Ada prototype consists of five parts, which are discussed briefly below.

Each will be described in greater detail in the subsections which follow the overview of the

prototype.

5.2.1 QUEST/ADA PROTOTYPE OVERVIEW

The first step in testing a module of source code is to pass a file containing the

source to the Parser/Scanner Module (PSM). The PSM is responsible for collecting basic

data about the program, such as the names, types, and bounds of all of the variables, as well

as the number of conditions and decisions found in the module. Additionally, the PSM is

responsible for "instrumenting" the source code, which involves replacing each Boolean

condition in the program with a function call to the Boolean function "RELOP" (see

example instrumented code will be given below). Instrumentation also involves surrounding

the test module with a "driver" or "harness". This harness is responsible for passing the test

data generated by the rule base to the module under test, either as parameters or global
information.
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Once the source module hasbeen scannedand instrumented, initial test data are
prepared for it by the Test Data Generator (TDG). The TDG is an expert system designed

to select the test data that will be most likely to drive a specific control path in the program.

Four types of rules were considered and evaluated in the test data generator: random,

initial, parse-level, and symbolic evaluation. Random rules, as the name implies, simply

generate random test data. The generation of random data provides base data for the more

sophisticated rule types to manipulate. Similarly, the initial rules generate simple base data

from the information supplied from the

sophisticated, rely upon the coverage table

Coverage Analyzer (see below). Parse-level

described by Prather and Myers [PRA87].

concept by representing each section of the

parse. Parse-level rules, which are more

and best-test-case list developed by the Test

rules implement the path prefix testing strategy

Finally, symbolic evaluation rules extend this

program as an abstract function.

The symbolic evaluation rules utilize the coverage table and the symbolic boundary

information. The work of the symbolic evaluator (SE) is divided into two parts --

developing and evaluating symbolic expressions. Using descriptions of the conditions in the

module under test provided by the PSM, the SE develops symbolic boundary expressions in

which each of the variables in a condition is represented in terms of the other variables.

This boundary expression implicitly describes the point at which the input variables will

cause the Boolean condition to evaluate to equivalence. Thus, by adding or subtracting a

small value, epsilon, to the boundary, the inequality can be forced into each of its three

states. After developing the symbolic boundary equations, the SE evaluates them using the

test data as it appears at the time the condition is executed.

As mentioned above, the more sophisticated rule types rely on the Test Coverage

Analyzer (TCA). The TCA provides two major functions: maintaining the coverage table,

and determining the "best" test case for every decision. The coverage table maintains a list

of each decision and condition in the module under test. Each decision and condition may

have one of four mutually exclusive coverage states: not covered, covered true only, covered

false only, and fully covered. This information is used by the parse-level and symbolic

evaluation rules to determine which decisions or conditions need to be covered to provide

complete decision/condition coverage. The best test case for each decision is determined

by a mathematical formula describing the closeness of a given test case to the boundary of

a specific condition. The test data generator rule bases modify the best test case to attempt

to create new coverage in the module under test.

Finally, a data management facility exists within the prototype to simplify the user

interface and report generation functions. This facility, known as the Librarian, is designed

to be portable so that a user interface can be developed on several machines by accessing

the librarian in a similar fashion. Additionally, the Librarian acts as a data archive so that

regression and mutation testing may be implemented using previously generated test cases.
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These functions act together to provide a prototype environment for the rule-based
testingparadigm. Eachone of the major parts of the prototype is describedin greater detail
in the following sections.

5.2.2 TEST DATA GENERATOR

As designed, the QUEST/Ada system's performance is determined by two factors:

(1) the initial test case rules chosen to generate new test cases, and (2) the method used to
select a best test case when there are several which are known to drive a path to a specific

condition. If the user does not supply an initial set of test cases, then they are generated

by rules that require knowledge of the type and range of the input variables. These initial

test cases are generated for these variables to represent their upper and lower values as well

as their mid-range values, i.e., (upper limit - lower limit)/2.

5.2.2.1 BEST TEST CASES

The objective of the Test Data Generation (TDG) component of QUEST is to achieve

maximal branch coverage. In order to assure the direction of test case generation to be

fruitful, a branch coverage analysis is needed. The coverage analysis of this framework

follows the Path Prefix Strategy of Prather and Myers [PRA87]. In this strategy, the

software code is represented as a simplified flow chart. The branch coverage status of the

code is recorded in a coverage table. When a branch is driven (or covered) by any test case,

the corresponding entry in the table is marked with an "X". For detailed examples see

Section 3.2 of the Phase 2 report [Brown90].

Problems arise when there is more than one test case driving the same path. If several

cases are used as the basis for subsequent test case generation, efforts are likely to be

duplicated, which is not efficient. Since an automatic case generator can generate a large
amount of cases, it would be necessary to quantify the "goodness" of each case and use the

"best" case as the model for modification.

The objective of modifying the best test case is to generate a new case which will

cover the uncovered branch of the targeted condition. For this reason, the selection of a

best test case will directly affect the success of test case generation.

Consider the typical format of an IF statement: IF exp THEN do-1 ELSE do-2. The

evaluated Boolean value of exp determines the branching. Exp can be expressed in the

form of: lhs <op> rhs. Lhs and rhs are both arithmetic expressions and <op> is one of

the logic operators such as <, >, < =, > =, < >, and =. The goodness of a test case, tl,
can be measured in terms of the closeness of lhs and rhs, provided that t l is used as the

input. When this measure is small, it is generally true that a slight modification of tl may

change the truth value of exp, thus covering the other branch. With this definition, a test
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case that yields the smallest measurement is considered to be the best test case of the
condition under consideration.

This closeness measurement has a serious risk, however. Recall that a set of new test

cases is generated based on the best test case of a partially covered condition (called target

condition), and the intent of the new test case set is to cover the uncovered branch of the

target condition. Although we define the slightness of modification of a test case as its

goodness, this measure is computed based on the target condition only. A slight

modification to the lhs and rhs of the target condition may not have the same meaning to

those conditions on the path. This may result in unanticipated branchings along the path,

therefore losing the original purpose of the new cases. In order to reduce the likelihood of

unanticipated branching, a test case's goodness measure should also consider those

conditions that are on the path. An example further explaining this requirement is given

in Section 3.2 of the Phase 2 report [Brown90].

Although the measurement that considers the complete path seems more appropriate

than the one that considers the target condition only, this is impossible to prove theoretical-

ly, since both definitions are derived heuristically.

When a test case is run in the test case analyzer and it reaches a condition that is

either partially covered or not covered at all, its goodness value is computed. This value is

then compared with the goodness value of the current best case, if there is one. If its value

is smaller, this test case replaces the original case and becomes the new best case. In the

QUEST prototype the test case analyzer keeps more than one test case for each partially

covered condition. That is, the second, the third, and the fourth best cases are also kept.

This provides alternatives for the test case generator when the original model does not yield

new coverage. At this point the test data generator procedures will be described in a

general way. Detailed descriptions are contained in Section 3.2 of the Phase 2 report

[Brown90].

5.2.2.2 TEST DATA GENERATOR PROCEDURE

When a new test case is generated, it is with the intention of covering a particular

branch. Based on the best test case of a targeted partially covered condition, a slight
modification to the case is made with the intent to execute the uncovered branch of the

target condition. The main issue in the research has been the establishment of methods for

efficiently performing this modification.

The following subsections discuss some heuristics that can be used for modification

to generate new cases, including: (1) fixed percentage, (2) random, (3) condition constants

and (4) symbolic evaluation.
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5.2.2.2.1 FIXED PERCENTAGE MODIFICATION

One way of generating new cases is to modify each parameter of the best test case with

a fixed percentage of each parameter's ranges. The percentage can be any one of or any

combination of 1%, 3%, 5%, 10%, etc. Several different combinations can be used at the

same time. This would provide more new cases. After a new case is generated, it must be

checked to ensure that each variable is within its range.

5.2.2.2.2 RANDOM MODIFICATION

This method modifies the best test case in a random way, i.e., the modification

percentage is random. Each new case must be checked for its validity before it is stored.

Random modification can be done in several ways. That is, in each new case, one or several

variables can be modified. Combinations of these modifications provide more cases and

may cover more branches.

5.2.2.2.3 MODIFICATION BASED ON CONDITION CONSTANTS

This method generates new cases based on the constants appearing in a condition.

Depending on the number of constants in a condition, different rules can be applied. For

example, if there is one constant and one input variable in a condition, then generate a new

case by putting the constant in the position of the input variable in the best test case. This

rule is designed for conditions of the form: x < op > C, where C is a constant. Similarly, for

two constant conditions, e.g., x + C_ < op > C 2, three new cases can be generated. They are

C 1+ C2, C1-C2, and C2-C v Implementation of this kind of heuristic has been reported in a

separate paper [DEA89].

5.2.2.2.4 MODIFICATION BASED ON SYMBOLIC EVALUATION

Another approach to new test case generation is to determine the boundary that

separates the true and the false values of a condition, say D. Effort is then directed to

modify the best case to cover both sides of the boundary. Since the evaluation of D can

only be externally controlled by input parameters, say x, y, and z, a meaningful way of

expressing the boundary would be defining it in terms of x, y, and z.

Remember that new test case generation should be based on the best case (x 1, ya, zl)

and the modification should be as small as possible. A simple strategy would be to modify

only one variable at a time. For example we can modify x and keep y and z unchanged.

In this case, the condition boundary expressed for x should be used, i.e., x b = fl(y,z, vl,vz, ...).

In order to compute the desired value of x at D, use the actual values of y, z, Vl, v 2, ... just

before D is evaluated. The computation provides the desired boundary value of x at
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condition D. Three new casescanbe generatedto coverboth true and falsebranches:(xu,
Ya,za), (xb+ e, Yl, z0, (xb-e,Yl, zl). Here, e is a small positive number, e.g., e = (range of
x) / 100. Similarly, this case generation procedure can be applied to variables y and z.

In this procedure, an undesirable assumption is made. It is assumed that x (or y or

z) would not be modified between the entry point and the target condition D. This may

not be valid at all. If an input variable value is modified by the program before reaching

the target condition, the precise computation of the boundary may lose its purpose.

Whether an input variable has been modified or not can be checked easily. For example,

if (x 1, Yl, zl) is a test case of the procedure and (x c, Yc, zc) are the actual values of x, y, and

z just before condition D is executed, input variable modification can be checked by

comparing these two sets of values. If a variable, e.g., x, has not been modified, i.e., x 1 =

xc, then the computed condition boundary, x b, can be used directly for new case generation.

Now, the question becomes: what can be done if an input variable has been

modified? If the desired boundary value of x at condition D is xb, this value must be

inverted back through the path that leads to condition D. Through this inversion, the value

of x at the entry point can be found. However, this involves a complex path predicate

problem which does not have a general solution [PRA87]. Heuristic approaches toward

solving this problem will be presented below.

Consider the following situation. The input value of x is x_, the actual value of x just

before condition D is x c, and x_ < > xc. This means variable x has been modified before

reaching D. Assume the condition boundary of x at D is xu. In this case, we might surmise

that input x should be changed from x, to an unknown value x,, such that, just before

reaching D, x will be changed from xc to x b. Since we do not know how x is modified along

the path, precise modification to x at the entry point cannot be computed. However, an

approximation can be derived. At condition D, the desired value of x is xu and the provided

value is x c. We may consider xi is off the target, i.e., the condition boundary at D, by the

following percentage of Ixb - xc] / (2*MAX([x_], [Xc])) * 100 %. Following this

measurement, we can modify input x with the same percentage.

Another way of approximating the input boundary value is to assume a linear

relationship between x c and x_. In this situation, the approximated boundary value for x at

the entry point would be xb*x_/x c. Three new cases can be generated for being on or

slightly off the boundary.

The order of execution or control flow of the Symbolic Evaluator to generate

boundary-values facts follows. The Symbolic Evaluator initializes a value for each variable

from the Parser/Scanner to NIL, evaluates each conditional expression, generates a

boundary condition, evaluates each boundary condition with conditional values (from the

Intermediate Results file), and replaces the NIL value with the actual boundary value.
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The input and output facts of the Symbolic Evaluator are contained in a series of
lists. The list of variables from the Parser/Scannerare created as a fact in "names X1 X2

... Xn". The Intermediate Results file is used to create conditional values stored as "val-at-

cond Y1 Y2 ... Yn" facts. The "val-at-cond's" are the values at the decision and condition

point for this evaluation. The Parser/Scanner generates the conditional expressions in infix

notation for conversion to "cond-expr Z l Z2 ... Zn" facts.

During execution, the Symbolic Evaluator sets a value for each variable to NIL (list-

of-nils). The boundary expressions are then generated and evaluated. New values replace

the NIL value if they are found; they are placed in the "boundary-values" listing. The

boundary values are submitted to the expert system for further evaluation if this is required.

When using the symbolic evaluation rules, the Test Data Generator requires the
intermediate results from the execution of the instrumented code and the conditional

expressions from the Parser/Scanner in order to generate facts and then execute. The

intermediate results and conditional expressions are put into files for the Test Data

Generator to read so that it can generate the required facts. The files are read, facts

generated, boundary results created, and new test cases generated. The files are then closed

awaiting new intermediate results.

In this section, several heuristic rules have been presented. It is likely that each rule

is effective in certain situations. If several rules are applied to a program, they will

complement each other and yield better coverage. The specific facts, given in CLIPS code,

as well as the CLIPS salience levels are given in Section 3.2 of the Phase 2 report

[Brown90], along with additional details on control flow and the symbolic evaluator and the

symbolic evaluator interface.

5.2.3 PARSER/SCANNER

Note that with the exception of the DIANA interface (Section 5.2.3.5), the

instrumentation function are not part of the QUEST/Ada prototype. See Section 5.2.3.4

for more details.

5.2.3.1 BASIC INSTRUMENTATION

Whereas static information concerning the Module Under Test (MUT) is provided

to the Test Data Generator via the Parser/Scanner Module, run-time information is

obtained through the use of function calls inserted into the original source code. These

function calls are placed at the various decisions throughout a program in order to

determine the set of paths executed by a particular set of test data. The information

acquired by the function calls is written to an intermediate file that is read by the Test

66



CoverageAnalyzer and convertedto forms that areusableby the Test Data Generator and
the Librarian.

The decisions that are instrumented by QUEST are those consisting of Boolean
expressionsin the following form:

LHS <relational operator> RHS.

These expressionsare replaced by function calls that evaluate their truth value and return

this value to the calling program.

A line of information is written to the intermediate file indicating the test number,

the decision and condition number, the truth value of the expression, and the values of the

left hand side and right hand side of the expression. These functions have the following

specification:

function relop(TestNum:integer;

DecNum: integer;

CondNum: integer;

LHS: Expr_type;

OP: Relop_type;

RHS: Expr_type) return BOOLEAN;

The functions are encapsulated in Ada GENERIC packages to facilitate parameter passing

and input/output of user-defined types. Currently, packages are available for integer,

enumerated, floating point, and fixed point data types.

The MUT is surrounded by a harness (i.e., driver program) that controls its execution

during testing. The driver is responsible for reading the test cases from a file and passing

this data to the MUT as arguments. Also, global data, out parameters, and return values

are written to a file for user inspection and regression test purposes.

5.2.3.2 INSTRUMENTATION FOR SYMBOLIC EVALUATION

Instrumentation for symbolic evaluation requires that the intermediate values of the

input parameters to the MUT be obtained at each decision in the program. Since Ada is

a strongly typed language, it is not possible to simply pass these parameters to the

instrumentation package because the number and types of the parameters vary according

to the makeup of the MUT. Also, it is not possible to declare the procedure as SEPA-

RATE to the instrumentation package, since the procedure must be declared inside the

MUT in order for the parameters to be visible. This problem was circumvented by creating

a procedure within the module under test and passing the procedure as a GENERIC to the
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instrumentation package. The procedure only needs a single parameter -- the name of the

file to which the output is to be directed.

5.2.3.3 INSTRUMENTATION FOR MULTIPLE CONDITIONS

Instrumentation for multiple conditions requires the instrumentation package to be

extended to include a function to determine the overall truth value of a decision. For

example, the following decision:

IF(a < bANDc > d) THEN

would be translated to the following statement:

IF decision(TEST_NUM,and(relop(TEST_NUM, 1,a, LT,b),

relop(TEST_NUM,2,c,GT, d))) THEN

The function relop() acquires information about the individual conditions, while the function

decision() acquires information about the overall decision.

5.2.3.4 AUTOMATIC INSTRUMENTATION

The instrumentation described here is currently being performed manually. Although

automatic instrumentation could be performed during the execution of the Parser/Scanner

Module, its implementation would have required considerable effort which would have

greatly hindered progress on the other substantial areas of the research and prototyping.

Given the instrumentation specified here, the development of an automatic instrumenter is

seen to be a relatively straightforward task for those in the industry who are specializing in

the design and development of Ada compilers. In fact, this could be integrated into the

compiler and debugger tools in a very efficient manner. For these reasons, it was decided

that prototyping of the automatic instrumentation would not be pursued immediately.

However, the requirements for automatic instrumentation are clear in the manual examples

which were employed to test the QUEST system. Examples of instrumented programs and

source code for the instrumentation packages may be found in Appendix B of the Phase 2

report [Browng0].

5.2.3.5 DIANA INTERFACE

The Parser/Scanner Module has four primary functions:

1) Compile a List of executables,

2) Extract input facts,

3) Extract condition facts, and

4) Instrument the source module.
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The Verdix Diana interface is usedto retrieve this information from an Ada library.

Diana is an abstract data structure containing information about an Ada source, and a set

of procedures for getting information from the structure. Once the user has selected the

system to be tested, the system is compiled using the -F (full Diana) option of the Verdix

Ada compiler. This option ensures that no information about the source gets "pruned" out

of the Ada library.

After the system is selected, the user is presented with a list of all of the executable

modules in the system. This list is created by the Parser/Scanner Module. The PSM

searches the Diana net, builds a linked list of the executables, and then passes it to the

interface to be presented to the user.

Once the module to be tested has been selected, the PSM traverses the Diana net

for the module and retrieves information about the input to the module. This includes facts

about parameters and about global data used in the module. These facts are saved to a file

to be read later by the Test Data Generator. The saved facts include:

1 arameter ameL ypeI BoundsIHighBounds
They are formatted as assertions to CLIPS [CLI87]:

parser_scanner_assertions "<modulename>"

( names <parml_name> <parm2_name> ... <parmn_name> )

( types <parml_type> <parm2_type> ... <parmn type> )

( low bounds <parml_low> <parm2_low> ... <parmn_low> )

( high_bounds <parml_high> <parm2_high> ... <parmn_high>)

Facts about every decision in the module are gathered and written to a file. The

Diana net is traversed in search of every decision in the module. Each decision is given

unique number (dec#) as is each condition within a relation (cond#). These facts are

formatted and saved for input into the Test Data Generator as follows:

decision condition facts "<module name>"

<dec#> <cond#> ( <formatted condition> )

<dec#> <cond#> ( <formatted condition> )
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Instrumentation at each condition in the module must provide information about the

results of the condition test. Currently, this instrumentation is done by hand. While

automating this process is a fairly straightforward, it would require more manpower than is

available on this project. The format of the instrumentation is expected to change as new

requirements are received. The current format of the instrumentation function is:

relop (< test# >, < dec# >, < cond# >, < LHS >, < op >, < RHS >)

The relative operation function 'relop' takes as parameters the test number, decision

number, condition number, left-hand-side of the condition, right-hand-side of the condition,

and the operation to perform. It writes to a file called "INTERMEDIATE.RESULTS",

which is later read by the Test Coverage Analyzer. The data written includes the test,

decision and condition numbers, the left and right sides, the result of the operation (TRUE

or FALSE), and the test data which caused this condition to be evaluated. It is encapsulat-

ed in Ada GENERIC packages to facilitate parameter passing an input/output of user-

defined types.

'Relop' returns the results of the condition evaluation, so that it can be inserted as

a function call in place of the condition. For example,

if (y* 10 < 3) then ...

would be converted to:

if (relop (1, 5, y*10, 3, "<")) then ...

5.2.4 COVERAGE ANALYZER

In order to experiment with the effects of altering the knowledge about the conditions

of a program under test, three categories of rules have been selected. The first category of

rule reflects only type (integer, float, etc.) information about the variables contained in the

conditions, since they generate new test cases by randomly generating values. As

implemented, these rules determine lower bounds, upper bounds, and types of the variables.

A random value of the same type is generated, and the value is checked to be sure it is

within the range for the variable.

The second category of rule attempts to incorporate information from three sources:

(1) that which is routinely obtained by a parse of the expression that makes up a condition

(such as variable types and ranges), (2) information about coverage so far obtained, and (3)

best test cases from previous tests. A typical rule for this category would first determine

bound and type information associated with a variable, calculate this range, and then

generate new test cases incrementing or decrementing the variable by a small fraction of its

range, and checking to see that the result is still in bounds.
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The final type of rule utilizes information about the condition that can be obtained
by symbolicmanipulation of the expression.The given rule usesa boundary point for input
variables associatedwith the true and falsevalue of a condition. This value is determined
by usingsymbolicmanipulation of the condition under test. Many valuescanbe chosenthat
crossthe boundary of the condition and,as with best test caseselection, a value is sought
that will not alter the executionpath to the condition. In addition to best test caseselection,
this rule basehasadditional knowledgeto generatenew test cases.The valuesof variables
at a condition are comparedwith input valuesof the variables usedto reach that condition.
This added information is incorporated in the generation of new test cases.

Supposethat for an input variable x appearing in a condition under test, the value
of x at the condition boundary hasbeen determined to be xb and the input value that has
driven one direction of the condition is xi. We do not know how x is modified along the

path leading to the condition since the value of x on input may differ from the value of x
at the condition. However, we are able to establish that the value of x at the condition is

xc. Provided the values lie in the limits allowed for values of x, the new test case is chosen

as:

Xb*(Xi/Xc) + e

where e is either 0 or takes on a small value (positive or negative).

In general, these rules first match type and symbolic knowledge about the condition,

information from the coverage table, and information about the values of the variables at

the condition. Using this information the value required to alter the condition's truth value

is symbolically computed. The new test case is generated by the formula given above, which

supposes that a corresponding linear change will occur in the value of x from its initial

value. The value of x is altered slightly in order to attempt to cross the boundary but not

change the execution path to the condition.

5.2.4.1 AUTOTEST AND THE TEST COVERAGE ANALYZER

The purpose of the Autotest module is to coordinate the activities of the Test Data

Generator (TDG), the module under test (MUT), and the Test Coverage Analyzer (TCA).

Autotest repeatedly calls the above procedures until all of the required test packets are

complete. The primary job of TCA is to supply the TDG with the best test cases which

have been used to execute the MUT. It also accumulates data for reports after the test and

archives the results. A best test case is chosen for each condition in the MUT. There can

be several different methods for choosing the best test case. Currently, two methods have

been implemented. The first is to calculate the distance each test case is from a border of
the condition in order to select the case which is closest to the border. The second method

involves the above procedure augmented by steps for the avoidance of previously

encountered conditions. In this approach test cases are selected for closeness to the current
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condition and distance from all of the previous conditions. The methods for selecting the
best test casesare more fully described below.

The TCA keepsa coveragetable entry for each condition encounteredin the MUT.
If a condition hasnot been encounteredbefore, a new entry is created in the table. If it has

been encountered before, but with a different Boolean result, it is updated to indicate

complete coverage. The coverage statistics are based on the number of conditions in the

module under test, the number that are partially covered, and the number that are

completely covered.

Each condition entry in the coverage table contains references to the best test cases
for that condition. When a condition is first encountered, the driving test case is the only

test case for that condition; thus it is the best. As long as the condition is only partially

covered, the TCG will attempt to generate test cases which continue to exercise the

condition. When this occurs, the current test case will replace the previous best test case

if the criteria being applied indicate that it is "better." The table is not altered for

completely covered conditions since the TCG considers them to be completed.

After all of the test cases for a particular packet have been viewed and used to

update the coverage table, the table is searched for partially covered conditions, and the

associated best test cases are returned to the test data generator.

Test case generation rule groups may be exhausted before a new coverage is

achieved. This failure can be attributed to two factors: inappropriate modification, and

inappropriate best test case. This former factor may be solved by adding more rule groups.

The second factor mast be solved by selecting an alternative test case.

Since the selection of a best test case is based on heuristics, it may not be

appropriate for some situations. For this reason, instead of keeping the best test case only,

several "good" test cases should also be recorded for a partially covered condition. These

cases can be ranked according to a goodness definition or selected from different goodness

definitions. When a best test case has exhausted all case generation rules and no new

coverage is achieved at the target condition, an alternative case will be used.

A branching decision may contain two or more Boolean conditions. This kind of

decision is called a compound decision. It can be simplified into a form of IF A AND/OR

B THEN do-1 ELSE do-2. A and B are both Boolean conditions and can be in a compound

or simple form. A compound form contains at least one AND/OR operator. A simple

form can be either a Boolean variable or an arithmetic expressions with a comparison

operator, e.g., <, >, =, etc. Like a simple decision, two things must be considered for the

compound decision: goodness measure of a test case at a decision, and test case generation

rules. These will be considered in the following two paragraphs.
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If a condition contains Boolean variable(s) only, the test casegoodnessmeasure
should be basedon the sumof condition boundary closenessalong the path leading to the
target condition. Sinceonly Boolean variables are involved, closenessmeasurementcannot
be done at the target condition. However, if there is at least one arithmetic expressionin
the condition, a normalized boundary closenessmeasure can be used. For example,
considera test case,(x--12, y---8, and z--8), and a statement,IF (x > -- 10)OR (y = < -10)
THEN do-1 ELSE do-2. The boundary closenessmeasure of each individual term is
calculated first. For the first term, (x > = 10), the measure is [ 12 - 10[ / (2 * MAX(112 I,

[10[) = 2/24; for the second term, (y = < -10), the measure is 2/20. The normalized

measure is simply the average of these two measures. At this point earlier definitions of

goodness can be applied.

In a decision containing multiple conditions, the negation of the Boolean conditions

is not trivial. Consider the following two situations.

(1) IF a 1 THEN do-1 ELSE do-2

(2) IF a 1 and/or a 2 and/or a3 THEN do-1 ELSE do-2

In (1), a change of the branching can be achieved simply by changing the Boolean value of

a 1. On the other hand, in (2) the branching cannot always be modified by changing one

item. Since there are three conditions in (2), there are eight possible combinations of the

Boolean conditions. Among these combinations, some lead to do-1 and some lead to do-2,

depending on the context of the problem. When a branch is targeted for further coverage,

it will be required to assign Boolean values to all of the terms, i.e., a 1, a_,, and a 3. This

assignment is not as simple as looking up the truth table of the condition. Since we try to
minimize the modification of a best test case, this must also be considered in the truth

value assignment of each condition.

Once the assignment to each condition is determined, test cases must be generated

to satisfy the requirement of each condition. Unfortunately this may involve solving a set

of predicates which has been recognized as an extremely hard problem, as referenced above.

In order to simplify the test case generation, a set of heuristic rules are applied (see the

Phase 2 report [Brown90] for details).

5.2.5 LIBRARIAN

The librarian routines for the Quest/Ada environment provide methods to easily

archive and restore data for a particular test set. The librarian is implemented in three

parts. The first is the code specific to manipulation of indexed records. This code has been

isolated as much as possible to allow it to be changed if necessary. Currently it uses a set

of shareware B-tree routines known as BPLUS to manage indexed files. The second part

of the librarian code is the collection of librarian primitives. These primitives serve as an
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abstracted interface to the specific file manipulation routines. This makes it easier to
replace the code for managingindexingwhile keeping the samecoding style for calling the
librarian. The third and last part of the librarian is the code written specifically to
manipulate QUEST/Ada files. The first two parts are mostly free of application-specific
code, allowing them to be reused for other projects. In discussingthe librarian and its
design,the QUEST/Ada implementation will be used asthe main example.

This section will continue by presenting some basic concepts employed by the
librarian component of QUEST. A second section will detail the use of the Librarian.
Some intricacies of these routines will then be described,after which appearssomenotes
on its portability. The librarian routines are given and described in Appendix C of the

Phase 2 report [Brown90].

5.2.5.1 BASIC CONCEPTS

A collection of binary data files contain records which represent information that has

been archived from QUEST. These data files are known as "flat files" because they do not

contain indexing information. Separate files exist to aid in indexing the data files. The

name of an indexing file is the name of the data file concatenated by a "key number"

assigned by the librarian which indicates the index file represented. Key numbers start at

zero (which is usually the unique key for the data file). For example, if the file name was

testl.dat, the index file name for key number zero would be testl.dat00, and the index file

name for key number one would be testl.dat01.

All of the files are collected under the same directory. For QUEST/Ada, the file

names are constructed by beginning with a given system name and concatenating onto it an

extension representing the data contained in the flat file. For example, if the system name

was XXX, the file names would be:

Coverage Table:
Intermediate Results:

Test Data:

Test Total Results:

XXX.COV

XXX.MED

XXX.DAT

XXX.RES

Again, the index files for the data files are the same except that the key number is tacked
onto the end of the file name.

All of the librarian routines return a result code. Generally, if the return code is

below zero, an error has occurred. If the return code is zero, the function has executed

without any bothersome events. If the return code is greater than zero, some event has

occurred which might be important information for QUEST users (an end of file, for

example). All of the return codes are defined in the header file librarian.h by #define state-
ments.
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A data file canhave more than one key. This simply meansthat the data file hasan
additional index file that canbe used in another way to search through the data file. An
index file can contain either unique or non-unique keys. At least one index file (usually
number 00) should be unique so that specific records can be found. The keys are a
composite collection of members in the data record.

5.2.5.2 USING THE LIBRARIAN

Prior to use, the librarian must be initialized, and the function lib_init() is called to

allow the librarian to organize its data structures. The routine lib_directory() may be called

to set the directory path in which the librarian files should be put. The function lib_set()

is then called to establish which archive is to be opened or created. To start an archive

from scratch, it is a good idea to call lib_remove0 after calling lib_set() so that all existing

archive files can be deleted.

After an archive has been set, its data files can be opened. The function lib_open()

is passed a number representing the file to be opened. A number of options exist to read

records from the file. Before attempting any read (including the initial sequential read), call

the routine lib_set_key() to tell the librarian the index file by which the data file will be

indexed. Sequential reading is enabled by using two steps. First, call lib_read0 with the

mode LIB FIRST REC to rewind the offset into the index file to the first record. This will

also retrieve the first record from the file, if possible. To read all records after the first, call

lib read() with the mode LIB NEXT REC. This can be continued until the return code

from lib read() is LIB EOF. To readkeyed files, first call lib_set_key() to set up which key

and which key components are to be employed for searching. Then call lib_read() with one

of two modes: LIB FIRST MATCH or LIB NEXT MATCH:

LIB FIRST MATCH

LIB NEXT MATCH
n

will search the index file for the first occurrence of a matching

key and if successful, it will retrieve the data record.
is used for index files in which the keys are not unique: more

than one record can have the same key.

LIB FIRST MATCH is used to find the first match, and lib_read0 can be called with the

mode LIB _IEXT MATCH to find all subsequent matching records. When no more

records exit, LIB-NO MATCH is returned.

Writing records to a file is much the same. First, all of the key contents for the

record must be established by calling lib_set_key() for each one. This is essential. Upon

calling lib_write0, all keys for the record are assumed correct and written out to their

respective index files. This means that if a record has three keys, then lib_set_key() needs

to be called for key 0, key 1, and key 2. Then the record can be saved via lib_write(). Note

that lib_write0 might "fail" if a particular key is supposed to be unique but already exists
in the index file. In this case the data record is not written to the data file.
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The function lib_close0 shouldbe called whenrecord manipulation for a data set is
complete. Under the BPLUS indexingsystem,it isvery important that open files areclosed.
This is due to the indexing routines employing local "caching"of index information. If the
files are not closed,this cachinginformation maynot bewritten out, and the index file can
becomeinconsistent. The routines to terminate associationwith an archive or to shutdown
the librarian determine if files are still open, and if so, they close them.

The function lib_open0 is additive for a data set. If lib_open() is called more times
than lib_close0 is, a data set has a positive open count. It will not actually be closeduntil
the samenumber of calls to lib_close() astherewere to lib_open(). On shutdown,anyfiles
with non-zero open counts are consideredopened, and an attempt will be made to close
them.

5.2.5.3 DETAILS OF THE LIBRARIAN CODE

The librarian is designed to rely on another set of code to do the detailed work of

creating indexes into a file. The librarian routines merely take a binary collection of data

and save it somewhere, leaving a method to quickly find the data again later. The librarian

is designed using the BPLUS collection of B-tree index file management routines.

Any given binary data record must possess the following attributes:

,

2.

3.

4.

5.

A data set number,

A set length (in bytes),

A set number of keys (at least one),

A data file to be stored in, and

Components that are used to create keys.

The librarian routines use the data set number for an index to access a global structure

called lib_glbl. This global structure is very important because it is used to store descriptive

attributes about each active file. This includes record size, number of keys, and the keys

that have been set for the given record. Currently, lib_glbl is initialized in the function

lib b setup(), which is called during execution of lib_set(). The keys for a record, although

likely made up of components within the record, are not stored with the record in the data

file. The function lib set_key() needs to be called for each key in a record before the

record is written out. Each time lib_set_key0 is called, the associated key string in lib_glbl

is updated.

The global lib_arch is used to keep track of less specific details, like the archive

directory, archive name, and the open count for each file (0 means closed, greater than zero

represents the number of times lib_open0 has been called for the file).
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If necessary,the index code canbe changedwhile the method of using the librarian
can be maintained. Changesto the global structures and to the librarian functions will
definitely be required, but other code calling the librarian should be minimally affected, due

to the basic functionality of the librarian primitives remaining the same.

The QUEST/Ada test data is read into a union type (lib_numeric_type) which is a

joining of all of the integer and floating point types.

Some of the record types are "blocked", i.e., the data are broken into a number of

individual, fixed-size records. This is due to some of the information stored in the

temporary files are variable length. Part of the record's information is its block number.
The define LIB BLOCK SIZE is used to decide how much information is allocated for each

block. Also included in-]he record is a count for how many items in the block are used.

If this count equals the LIB BLOCK SIZE, then the next block should be checked for

existence. Once the count is]ess than i-he LIB BLOCK SIZE define, the last block in the

data is reached.

5.2.5.4 BPLUS PORTABILITY NOTES

Much of the source code employed in the Librarian was originally intended for

execution under MS-DOS. It was developed for the Microsoft C and the Borland Turbo C

compilers. For the most part, standard C routines are employed for the file management.

These routines, commonly known as the "UNIX" class of file routines, include open(),

read(), write(), and close(). These routines should be standard in almost any implementa-

tion of a C compiler. Porting to the VAX required the deletion from the BPLUS.H and the
BPLUS.C files of all instances of "cdecl" and of "Pascal". The #include statements had to

be rearranged to either not include a file that did not exist on the VAX or to remove a

"sys\" directory specification. Additionally, a filelength() function had to be written to allow

the length of a file to be determined given the file's descriptor number. A phony #define

for O BINARY has been added so that an open() call succeeds. This binary specification

is re@ired for MS-DOS and other compilers that default to character translation for their

data files.

An important note that might affect portability in the future has to do with the

memcpy 0 function. In order for the code to run correctly on a Macintosh using the THINK

C compiler, key memcpy() calls had to be changed to memmove(). This is because the

ANSI standard of memcpy() now fails when overlapping memory space is involved. The

function memmove() is specifically supposed to handle copying involving overlapping

memory.

The BPLUS.H and BPLUS.C files contain function prototypes for the BPLUS

functions. Only a compiler that contains the ANSI extensions to handle function prototypes

can deal with their presence. Older style compilers (K&R vintage) will abort compilation
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on encountering the function prototypes, requiring the declarations to be modified in order

for the program to compile. Only the arguments contained within the prototype declaration
need to be removed.

One final portability note is that the routine vsprintf0 is called to print the ASCII

representation of the key string (required for the BPLUS routines). This routine, although

standard now, may not exist in older C libraries.

5.3 QUEST SYSTEM STRUCTURE

5.3.1 COMPONENT DIAGRAMS

The overall structure of the QUEST/Ada system was designed using the TAGS

Input/Output Requirements Language (IORL). While the entire set of IORL specifications

is given in the Phase 1 report [Brown89], some of these diagrams are updated in this section

for illustration. Figure 5.3.1a shows the highest level of data flow, with the user interacting

with the test environment, called QUEST (Query Utility Environment for Software Testing).

Note that the IORL system description generally ignores the details of the user interface in

order to simplify the model.

Table 5.3.1 presents the highest level data flows. As primary data flows, the user

supplies source code and receives coverage analysis reports. Test cases are initially input

by the user, who may continue to augment them throughout the test process. The user also

interacts with QUEST to provide parameters to determine the extent and duration of

testing. Requests for regression testing also proceed over interface QUEST-12. QUEST

provides the means by which an execution of the module under test will produce output

values for verification. Thus, actual module execution results also proceed over interface

QUEST-21.

Figure 5.3.1b goes into more details of the QUEST system. The module being tested

is input as Ada source code to the scanner/parser, which provides output to the test data

generator (TDG), the test execution module (TEM), and the librarian (LIB). Figures 5.3. lc-

f give a detailed graphical view of each of these modules. The interfaces between the

various subsystems are described in the following section.
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Table 5.3.1 Description of High Level Interfaces

INTERFACE

QUEST-12

QUEST-21

DESCRIPTION

Source Code

Test Data Generator Control Parameters

Initial/Updated User Test Data

Regression Test Signal

Coverage Analysis Reports

Source Code Listing

Test Case Execution Results
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5.3.2 DEFINITION OF HIGH LEVEL INTERFACES

5.3.2.1 PARSER/SCANNER INTERFACES

The parser/scanner produces data structures which describe the program under test

to the test data generator and the report generator. This includes information concerning

the input variables and parameters, condition and decision structure, and segment or block

structure. The parser also augments the source code with a driver module for use by the
test execution module. These interfaces are detailed in Table 5.3.2.1.

Table 5.3.2.1 PARSER/SCANNER MODULE INTERFACES

INPUT: QUEST, ADA SOURCE CODE
FROM: USER

OUTPUTS: QA-13, INSTRUMENTED SOURCE CODE

TO: TEST EXECUTION MODULE

i. INSTRUMENTED DECISIONS

2. MODULE DRIVER

QA-12, SYMBOLIC REPRESENTATION INFORMATION
TO: TEST DATA GENERATOR

i. PARAMETER LIST

2. TYPE DECLARATIONS

3. DECISION/CONDITION DEFINITIONS
a. DECISION NUMBER

b. CONSTRUCT TYPE

c. DECISION STRUCTURE

QA-15, SYMBOLIC REPRESENTATION INFORMATION
TO: LIBRARIAN

i. DECISION/CONDITION LIST
a. DECISION NUMBER

b. CONSTRUCT TYPE

c. NUMBER OF CONDITIONS

5.3.2.2 TEST DATA GENERATOR INTERFACES

The Test Data Generator (TDG) interfaces are given in Table 5.3.2.2. The TDG

obtains input from the parser/scanner in the form of a parse tree which describes the
relevant structures within the source code. It translates this information into assertions

which are used to determine the firing of the rule base.
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The TDG interactswith the testexecutionmodulevia test casesand test results. The
results of each test case are analyzed by the Test Coverage Analyzer so that it can make

decisions for the creation of additional test cases. This is performed by automatically

analyzing the "quality" of the results generated at a given point in the testing process, where

quality is determined by coverage metrics and variable value domain characteristics. The

QA-23/QA-34/QA-42 loop is reiterated automatically until a given coverage is attained or

until a user-defined check point is reached in terms of number of test cases generated. At

this point the user will either stop the process or supply additional parametric information

(via QUEST-12) to generate additional test data. User-defined test data may also be

supplied at any of these check points.

Table 5.3.2.2 TEST DATA GENERATOR INTERFACES

INPUTS: QUEST-12, TEST CASES: NORMAL AND REGRESSION
FROM: USER

QA-12, SYMBOLIC REPRESENTATION INFORMATION

FROM: PARSER/SCANNER MODULE

QA-42, TEST EXECUTION RESULTS
FROM: TEST COVERAGE ANALYSIS

OUTPUTS: QA-23, TEST CASES
TO: TEST EXECUTION MODULE

i. TEST CASE NUMBER

2. TEST DATA

QUEST-21, DYNAMIC COVERAGE INFORMATION
TO: USER

5.3.2.3 TEST EXECUTION MODULE INTERFACES

The Test Execution Module (TEM) interfaces are shown in Table 5.3.2.3. TEM

receives the instrumented source code sufficiently harnessed by a driver to enable it to be

executed. Thus, its task is merely to execute the instrumented source code using as input

the test data generated by the TDG component.

The TEM generates two outputs. The simplest of these is information for the Test

Coverage Analysis (TCA). Each test case executed will produce an output via the

instrumentation (i.e., a side effect) which will indicate the decision/condition satisfied by
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that test case. This information will be processed by the TCA in order to serve appropriate
information to the Test Data Generator and the Librarian.

The second output is a library of both the intermediate coverage information

described above and the output results of each test case. This information will be stored

for retrieval by the Regression Testing function and the Report Generator.

_m

Table 5.3.2.3 TEST EXECUTION MODULE INTERFACES

INPUTS: QA-13, INSTRUMENTED SOURCE CODE

FROM: PARSER/SCANNER MODULE

QA-23, TEST CASES
FROM: TEST DATA GENERATOR

OUTPUTS: QA-34, TEST EXECUTION RESULTS
TO: TEST COVERAGE ANALYZER

i. TEST CASE NUMBER

2. DECISION NUMBER

3. LIST OF VALUES OF DECISION VARIABLES

4. LIST OF CONDITION RESULTS

QA-35, OUTPUT RESULTS

TO: LIBRARIAN

QUEST-21, TEST CASE EXECUTION RESULTS

TO: USER

5.3.2.4 TEST COVERAGE ANALYSIS INTERFACES

Table 5.3.2.4 presents the Test Coverage Analyzer (TCA) interfaces. Essentially TCA

takes the output generated via the probes inserted by the instrumentation and translates this

information into the input required for efficient and straightforward report and test data

generation. Note that this is accumulated in two formats, one for the analysis of an

individual test case, and the other for the cumulative results of all tests performed. As

mentioned above, a primary use of the former information is to provide feedback to the

TDG to automatically generate improved test cases.
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Table 5.3.2.4 TEST COVERAGE ANALYZER INTERFACES

INPUT:

OUTPUTS:

QA-34, TEST EXECUTION COVERAGE RESULTS
FROM: TEST EXECUTION MODULE

QA-42, INTERIM COVERAGE ANALYSIS RESULTS
TO: TEST DATA GENERATOR

i. TEST CASE NUMBER

2. DECISION NUMBER

3. LIST OF VALUES OF DECISION VARIABLES

4. LIST OF CONDITION RESULTS

QA-45, INTERMEDIATE COVERAGE ANALYSIS DATA
TO: LIBRARIAN

i. INDIVIDUAL TEST COVERAGE DATA

a. TEST CASE NUMBER

b. DECISION NUMBER

c. CONDITION NUMBER

d. TRUE COUNT

e. FALSE COUNT

2. CUMULATIVE TEST COVERAGE DATA

a. DECISION NUMBER

b. CONDITION NUMBER

c. ACCUMULATIVE TRUE COUNT

d. ACCUMULATIVE FALSE COUNT

5.3.2.5 LIBRARIAN INTERFACES

The librarian serves as a mechanism for storing and retrieving information. It was

described in detail in Section 5.2.5. The librarian interfaces are given in Table 5.3.2.5.

Table 5.3.2.5 Librarian Interfaces

INPUTS:

OUTPUTS:

QA-45, INTERMEDIATE COVERAGE ANALYSIS DATA
FROM: TEST COVERAGE ANALYZER

QA-35, OUTPUT RESULTS
FROM: TEST EXECUTION MODULE

QA-15, SYMBOLIC REPRESENTATION INFORMATION

FROM: PARSER/SCANNER MODULE

QA-56, REPORT GENERATION INFORMATION
TO: REPORT GENERATOR
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5.3.2.6 REPORT GENERATOR INTERFACES

The symbolic representation information generated by the parser/scanner module is

used in conjunction with the coverage measurements calculated by the coverage analysis

module to produce detailed coverage analysis reports by the report generator. The user

analyzes these reports to determine if there is a need for more tests. These interfaces are
shown in Table 5.3.2.6.

Table 5.3.2.6 Report Generator Interfaces

INPUTS:

OUTPUTS:

QA-56, REPORT GENERATION INFORMATION
FROM: LIBRARIAN

QUEST-21, TEST COVERAGE REPORTS
TO: USER

i. REPORT TYPES

a. INDIVIDUAL TEST COVERAGE

b. ACCUMULATIVE TEST COVERAGE

2. COVERAGE TYPES

a. DECISION/CONDITION COVERAGE
b. MULTIPLE CONDITION COVERAGE

c. NO-HIT REPORT

5.4 DIRECTORY AND FILE DEFINITIONS

Basic directory structure of the Quest development directory:

DIRECTORY

./progs/

./src/autotest

./src/clips/clips4.1

./src/clips

./src/libr

./src/xui/xquest

./src/xui

./src/ada_packages

./src/misc

./src/conc/sensor

./src/conc

./src

./bin

./rules

./lib

./includes

DESCRIPTION

Where test programs should go
Autotest source code

Clips source code

Clips source code

Librarian source code

(Senior design project executable)

(Senior design project source)

Misc. Ada packages
Misc. source code

Example tasking program source

Concurrency directory

Source code for XQuest

Binary programs for XQuest

Clips rules (text)

Object code (Clips, librarian)

C include files (Clips, librarian)
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./archives

./dumps
./results

Destination for archived information
Various outputs
Coverage reports

Quest/includes

FILE NAME

clips.h
constdef.h

librarian.h

limits.h

quest.h
structdef.h

Quest/lib

FILE NAME

analysis.o

bplus.o

clips.o

lib_quest.o
librarian.o

main.o

math.o

npsr.o

parser.o

rulecomp.o

sysdep.o

sysfun.o

textpro.o
usrfun.o

usrint.o

Quest/rules

FILE NAME

random.clp

rdecby20p.clp

rdecby40p.clp

rdecby5.clp

rinc dec.clp

se.clp

DESCRIPTION

CLIPS include file

CLIPS include file

Librarian include file

CLIPS include file

Librarian include file

CLIPS include file

DESCRIPTION

Librarian: low

CLIPS routines

Librarian: high
Librarian: mid

CLIPS routines

CLIPS routines

CLIPS routines

CLIPS routines

CLIPS routines

CLIPS routines

CLIPS routines

CLIPS routines

CLIPS routines

CLIPS routines

level B-tree routines

level archive routines

level archive routines

DESCRIPTION

CLIPS rule:

CLIPS rule:

CLIPS rule:

CLIPS rule:

CLIPS rule:

CLIPS rule:

random numbers

decrement by 20 percent

decrement by 40 percent

decrement by 5
increment and decrement

symbolic evaluator
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Quest/src/autotest

FILE NAME

KimberlysStuff
Makefile

README

README4-24-90

README4-29-90

README5-03-90

SWindow.c

SWindow.h

SWindowP.h

accum results2.c

autotest.c

backup

bldhlp

bldhlp.c

bldhlp.1

chckhlptb

chckhlptb.c

help.c

help.pre

name_system.c

other.c

project.c

quest.help.tab

quest.help.text

reports.c

rptgen.c
tcover.c

testing.c

xql.c

xql.h

xqmenus.c

xquest

xquest.c

xquest.h

Quest/src/clips

DESCRIPTION

Directory -- unused

Make file for creating xquest

Info file
tt tt

t_ tl

tt It

Modified HP widget private source file

(scrolling window)

Modified HP widget public include file

Modified HP widget private include file

Accumulate results

Autotest main loop

Directory -- back ups

Program: build help file

Source code to bldhlp. Create help file

Lex source code to bldhlp

Program: assists in building help file

Source code to chckhlptb

Source code for help system

Input help file

Source code used in setting up archive

destination

X user interface control

X user interface control: project menu

Help input file

Help input file

X user interface control: reports menu

Report generation routines

Coverage analysis
X user interface control: test menu

X user interface control

X user interface control

X user interface control: menu utilities

Program: Quest/Aria
X user interface control: driver

X user interface control: header file
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FILE NAME

README

analysis.c

clips.c

clips.exe Program:

clips.h
constdef.h

main.c

makefile

math.c

npsr.c

parser.c

rulecomp.c
structdef.h

sysdep.c

sysfun.c

textpro.c
usrfun.c

usrint.c

DESCRIPTION

Information file

CLIPS source code

CLIPS source code

CLIPS command line interface

CLIPS source code

CLIPS source code

CLIPS source code

Make file for creating CLIPS
CLIPS source code

CLIPS source code

CLIPS source code

CLIPS source code

CLIPS source code

CLIPS source code

CLIPS source code

CLIPS source code

CLIPS source code

CLIPS source code

Quest/src/libr

FILE NAME

README

bplus.c

bplus.h
lib def.h

lib-quest.c

librarian.c

librarian.h

DESCRIPTION

Information file

Low level btree routines

Low level btree routines: include file

Librarian definitions / data structures

Librarian high level routines
Librarian mid level routines

Librarian data structures

5.4 FILE DESCRIPTIONS

(To be completed in second half of Phase 3)



6.0 PROJECT SCHEDULE

6.1 SUMMARY OF PHASE 3 ACCOMPLISHMENTS

The goals of Task 1, Phase 3 are: (1) to further refine the rule base and complete

the comparative rule base evaluation, (2) to implement and evaluate a concurrency testing

prototype, (3) to convert the complete (unit-level and concurrency) testing prototype to a
workstation environment, and (4) to provide a prototype development document to facilitate
the transfer of the research technology to a working environment. The progress in achieving

these goals will now be discussed by subtask.

1. Refinement of the rule base.

The symbolic evaluation rule base developed in Phase 2 was capable of generating

test data for unit-level testing which obtains coverage that is very difficult to achieve with
standard test case generation. However, continued enhancements of the rule base are

necessary in order for this technique to reach its full potential. The objective is to generate
test sets which either lead to greater coverage or to the same coverage with fewer test cases

generated. Refinements to the symbolic evaluation rule base have been implemented using
the CLIPS expert system tool in an attempt to implement the design work that was done in

Phase 2. Two measurements were designed to select the best test case. One is based solely
on the target condition while the other is based on the target condition plus the conditions

that are on the path to the target condition. During the second phase, one of the three

developed methods is selected to generate new cases based on the given best case. The
three methods of modification are random, fixed percentage, and symbolic evaluation.

While some preliminary tests of this new scheme have been generated, work will continue

in the evaluation and refinement of the rule base during the remainder of the project.

2. Completion of the rule base evaluation.

The comparative evaluation of the various rule-based testing strategies has been

continued based upon the preliminary tests described above. Actual execution of the
updated prototype enabled the comparison of the test case generation rules with those

previously applied, both for the example modules which were previously used to test
QUEST, and some of the NASA-supplied modules. The completed evaluations are mixed

with regard to the advantages of the new rule base, and they will be further used to

qualitatively assess the strengths and weaknesses of each rule and rule type. Some showed

the newly implemented approach to be quite good, while others showed them to be about
the same as previous methods. Since these were performed late in the reporting period, a

detailed analysis of these results has not been performed. These results will be invaluable
in guiding the remaining part of the project. An attempt will also be made to quantify the

effects of interacting rule bases on the unit-level coverage of a variety of Ada programs.
Work will also continue in an attempt to identify an optimal general rule base across a

cross-section of testing paradigms and programs.
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3. Implementation and evaluation of a concurrency testing prototype.

The work on concurrency construct testing was confined to some additional design
work to further evaluate the alternatives proposed at the end of Phase 2. It has been

determined that the lock-step/monitor approach has the greatest chance for success. In the

remainder of the project the design will be further refined and implemented using

concurrency tasking information provided by the Verdix DIANA Aria interface package.
The concurrency testing approach will provide current history coverage information through

the use of the "iron-fist" task scheduling monitor which will force determinism into the Ada

rendezvous by locking all but one possible rendezvous in the case of multiple rendezvous
selects. It is anticipated that this approach, combined with the unit-level testing approach

already developed in Phases 1 and 2, will initially cover all rendezvous. The rendezvous
coverage prototype will be evaluated to determine the possibilities of extending the coverage

metric to a more general case, such as Taylor task histories.

4. Development of a workstation-environment prototype.

The meeting conducted with Boeing during Phase 2 of the project indicated the need
for a workstation environment for the testing prototype. This workstation environment has

now been developed (in particular, Sun SPARCstation, UNIX, XWindows). In addition to
providing a new user interface which reflects current user interface design techniques, this

development also affords the opportunity to expand the features of the prototype. One
important expanded feature is the use of the Verdix DIANA Ada interface package in the

place of the previous attributed grammar in the parser/scanner module. It is projected that
the use of the DIANA interface will also provide advantages in the development of the

concurrency prototype, aid the transition from prototype to working package, and make
QUEST compatible with the APSE standard. Additional work needs to be done, however,

in enabling the prototype to take full advantage of this environment. In particular, the

ability to execute the module under test without leaving the QUEST environment is a
feature which will be added along with other improvements in the user interface during the
remainder of Phase 3.

Work within this activity also included the overall upgrade of the QUEST prototype

environment. To a large extent developments within this period with regard to refining the
prototype have been driven by the example Ada code modules which were obtained from

NASA. Since the previous version of the prototype had only considered integer types, fixed

and floating point types were added to the test data generation rules. Also, provisions were
made to handle multiple conditions and global variables.

5. Development of a technology-transfer document.

In order to speed the transfer of technology from the research environment to a

working environment, a preliminary development document has been drafted. While certain
significant sections are not completed, the document provides the basis for a concise

overview and a detailed explanation of each module of the prototype system. In future

versions, directions which might be taken to expand the prototype modules into a more
robust system will be added. The purpose of this document will be to allow any interested
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NASA subcontractor to quickly develop a robust working automated testing environment
from the prototype developed during this research.

6. Continue contacts with NASA subcontractors currently developing Ada software.

The contacts established with Boeing in Phase 2 of this project provided useful insight
into the requirements NASA subcontractors have for an automated program testing tool.
Continued interaction with these contacts will be sought in the development of a

concurrency testing prototype appropriate to existing concurrent Ada software. Contacts
have also been made with Science Application International Corporation (SAIC),

Optimization Technology Incorporated (OTI), and McCabe Associates in order to arrange

joint agreements for the further development and eventual marketing of the QUEST system.

6.2 PROPOSED RESEARCH SCHEDULE

The Gantt chart in Figure 6.2 provides the sequence of Task I activities to be

accomplished during Phase 3 of this project as presented above. Progress in completing

Phase 3 has been delayed somewhat by the lack of available graduate students and the

delayed arrival of some important software components. This problem has been addressed
by additional recruiting and the receipt of the software. However, a no-cost extension to
September 31, 1991 has been be requested, and this is anticipated to be adequate for

completing all of the activities scheduled.

Task

1

2

3

4

5

6

1990

Jun Jul Aug Sep Oct Nov Dec Jan

1991

Feb Mar Apr May

Figure 6.2 Phase 3, Task I Gantt Chart
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